1.Exogenous hydrogen sulfide inhibits expression of tissue factor induced by ox-LDL through reducing generation of ROS and inhibiting NF-κB activation in endothelial cells
Huafei DENG ; Zhong REN ; Weijun TANG ; Xuefei LI ; Yulin TAN ; Zhihan TANG ; Lushan LIU ; Zuo WANG ; Zhisheng JIANG
Chinese Pharmacological Bulletin 2014;(7):979-984
Aim To investigate the mechanism for the inhibitory effect of hydrogen sulfide on the expression of tissue factor(TF)induced by oxidative low-density lipoprotein(ox-LDL)in endothelial cells.Methods Human umbilical vein endothelial cells (HUVECs ) were treated with 50 mg·L-1 ox-LDL in the absence or presence of different concentrations of NaHS (25 , 50,100 and 200 μmol·L-1 )for 24 h.The mRNA expression and protein content of TF in HUVECs were determined by reverse transcription PCR and ELISA, respectively.The content of intracellular reactive oxy-gen species (ROS)was determined by DCFH,an oxi-dative sensitive fluorescent indicator.The activation of nuclear factor-kappaB (NF-κB)was estimated by its expression in nuclear extracts analyzed by Western blot.Results Ox-LDL induced TF mRNA expression and increased TF protein content in HUVECs.The in-crease in intracellular ROS production and the activa-tion of NF-κB were observed in HUVECs treated with ox-LDL.However,NaHS could markedly inhibit the increases in TF mRNA and protein levels induced by ox-LDL.Also the elevation of intracellular ROS pro-duction and the activation of NF-κB elicited by ox-LDL were significantly suppressed by pretreatment with NaHS.In addition,pretreatment with BAY 1 1-7082 (10 μmol·L-1 ),the inhibitor of NF-κB or N-acetyl-L-cysteine(1 mmol·L-1 ),an antioxidant,could also decrease the TF mRNA and protein level as well as ROS production and NF-κB activation induced by ox-LDL in HUVECs,similar to the effects of 200 μmol· L-1 NaHS.Conclusion The mechanism for the in-hibitory effect of H2 S on the ox-LDL- induced TF ex-pression in endothelial cells may be related to inhibi-ting intracellular ROS production and subsequently NF-κB activation.
2. Comparison of the clinical value of ultrasonic elastography and common ultrasonic features in diagnosing papillary thyroid carcinoma
Yuguo WANG ; Xinping WU ; Xianqin LONG ; Zhihan TAN ; Jing CHEN ; Wenbo DING
Chinese Journal of Primary Medicine and Pharmacy 2020;27(2):134-137
Objective:
To compare the clinical value of ultrasonic elastography (UE) and three common ultrasonic features in diagnosing papillary thyroid carcinoma (PTC).
Methods:
From January 2012 to December 2017, the clinical data of 105 cases with PTC which were confirmed by postoperative pathologic examination and 20 cases with benign thyroid nodules (BTN) in the Integration of Chinese and Western Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine were analyzed retrospectively.The UE and common ultrasonic features comprising a taller-than-wide shape, irregular margins and microcalcifications were analyzed.The sensitivity, specificity and area under curve (AUC) of PCT dingnosis with two different ultrasonic parameters are calculated.
Results:
Based on surgical pathology, the diagnostic sensitivity of irregular boundary is the highest amony the three paraneters of ordinary ultrasound.Although an irregular margin showed higher sensitivity than taller-than-wide shape and microcalcifications with 71.42% vs.59.04% vs.60.00%, but there was no statistically significant difference (χ2=4.3,
3.Oral squamous cell carcinomas: state of the field and emerging directions.
Yunhan TAN ; Zhihan WANG ; Mengtong XU ; Bowen LI ; Zhao HUANG ; Siyuan QIN ; Edouard C NICE ; Jing TANG ; Canhua HUANG
International Journal of Oral Science 2023;15(1):44-44
Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by 2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ), and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors, thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC. Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate comprehension and provide several prospective outlooks for the fields.
Humans
;
Carcinoma, Squamous Cell/therapy*
;
Squamous Cell Carcinoma of Head and Neck
;
Mouth Neoplasms/therapy*
;
Head and Neck Neoplasms
;
Tumor Microenvironment