1.Identification and expression analysis of AP2/ERF family members in Lonicera macranthoides.
Si-Min ZHOU ; Mei-Ling QU ; Juan ZENG ; Jia-Wei HE ; Jing-Yu ZHANG ; Zhi-Hui WANG ; Qiao-Zhen TONG ; Ri-Bao ZHOU ; Xiang-Dan LIU
China Journal of Chinese Materia Medica 2025;50(15):4248-4262
The AP2/ERF transcription factor family is a class of transcription factors widely present in plants, playing a crucial role in regulating flowering, flower development, flower opening, and flower senescence. Based on transcriptome data from flower, leaf, and stem samples of two Lonicera macranthoides varieties, 117 L. macranthoides AP2/ERF family members were identified, including 14 AP2 subfamily members, 61 ERF subfamily members, 40 DREB subfamily members, and 2 RAV subfamily members. Bioinformatics and differential gene expression analyses were performed using NCBI, ExPASy, SOMPA, and other platforms, and the expression patterns of L. macranthoides AP2/ERF transcription factors were validated via qRT-PCR. The results indicated that the 117 LmAP2/ERF members exhibited both similarities and variations in protein physicochemical properties, AP2 domains, family evolution, and protein functions. Differential gene expression analysis revealed that AP2/ERF transcription factors were primarily differentially expressed in the flowers of the two L. macranthoides varieties, with the differentially expressed genes mainly belonging to the ERF and DREB subfamilies. Further analysis identified three AP2 subfamily genes and two ERF subfamily genes as potential regulators of flower development, two ERF subfamily genes involved in flower opening, and two ERF subfamily genes along with one DREB subfamily gene involved in flower senescence. Based on family evolution and expression analyses, it is speculated that AP2/ERF transcription factors can regulate flower development, opening, and senescence in L. macranthoides, with ERF subfamily genes potentially serving as key regulators of flowering duration. These findings provide a theoretical foundation for further research into the specific functions of the AP2/ERF transcription factor family in L. macranthoides and offer important theoretical insights into the molecular mechanisms underlying floral phenotypic differences among its varieties.
Plant Proteins/chemistry*
;
Gene Expression Regulation, Plant
;
Transcription Factors/chemistry*
;
Lonicera/classification*
;
Flowers/metabolism*
;
Phylogeny
;
Gene Expression Profiling
;
Multigene Family
2.Multiple biomarkers risk score for accurately predicting the long-term prognosis of patients with acute coronary syndrome.
Zhi-Yong ZHANG ; Xin-Yu WANG ; Cong-Cong HOU ; Hong-Bin LIU ; Lyu LYU ; Mu-Lei CHEN ; Xiao-Rong XU ; Feng JIANG ; Long LI ; Wei-Ming LI ; Kui-Bao LI ; Juan WANG
Journal of Geriatric Cardiology 2025;22(7):656-667
BACKGROUND:
Biomarkers-based prediction of long-term risk of acute coronary syndrome (ACS) is scarce. We aim to develop a risk score integrating clinical routine information (C) and plasma biomarkers (B) for predicting long-term risk of ACS patients.
METHODS:
We included 2729 ACS patients from the OCEA (Observation of cardiovascular events in ACS patients). The earlier admitted 1910 patients were enrolled as development cohort; and the subsequently admitted 819 subjects were treated as validation cohort. We investigated 10-year risk of cardiovascular (CV) death, myocardial infarction (MI) and all cause death in these patients. Potential variables contributing to risk of clinical events were assessed using Cox regression models and a score was derived using main part of these variables.
RESULTS:
During 16,110 person-years of follow-up, there were 238 CV death/MI in the development cohort. The 7 most important predictors including in the final model were NT-proBNP, D-dimer, GDF-15, peripheral artery disease (PAD), Fibrinogen, ST-segment elevated MI (STEMI), left ventricular ejection fraction (LVEF), termed as CB-ACS score. C-index of the score for predication of cardiovascular events was 0.79 (95% CI: 0.76-0.82) in development cohort and 0.77 (95% CI: 0.76-0.78) in the validation cohort (5832 person-years of follow-up), which outperformed GRACE 2.0 and ABC-ACS risk score. The CB-ACS score was also well calibrated in development and validation cohort (Greenwood-Nam-D'Agostino: P = 0.70 and P = 0.07, respectively).
CONCLUSIONS
CB-ACS risk score provides a useful tool for long-term prediction of CV events in patients with ACS. This model outperforms GRACE 2.0 and ABC-ACS ischemic risk score.
3.The crosstalk of Wnt/β-catenin signaling and p53 in acute kidney injury and chronic kidney disease
Wen-Hua MING ; Lin WEN ; Wen-Juan HU ; Rong-Fang QIAO ; Yang ZHOU ; Bo-Wei SU ; Ya-Nan BAO ; Ping GAO ; Zhi-Lin LUAN
Kidney Research and Clinical Practice 2024;43(6):724-738
Wnt/β-catenin is a signaling pathway associated with embryonic development, organ formation, cancer, and fibrosis. Its activation can repair kidney damage during acute kidney injury (AKI) and accelerate the occurrence of renal fibrosis after chronic kidney disease (CKD). Interestingly, p53 has also been found as a key modulator in AKI and CKD in recent years. Meantime, some studies have found crosstalk between Wnt/β-catenin signaling pathways and p53, but more evidence is required on whether they have synergistic effects in renal disease progression. This article reviews the role and therapeutic targets of Wnt/β-catenin and p53 in AKI and CKD and proposes for the first time that Wnt/β-catenin and p53 have a synergistic effect in the treatment of renal injury.
4.Exercise Improves Nonalcoholic Fatty Liver Disease in T2DM Mice by Inhibiting Ferroptosis Through p38 MAPK Signaling Pathway
Bao-Wen ZHANG ; Ying LI ; Yuan GAO ; Ke-Yan SHENG ; Zhi WANG ; Xian-Juan KOU
Progress in Biochemistry and Biophysics 2024;51(11):2983-2997
ObjectiveTo explore the mechanism of treadmill exercise against type 2 diabetes mellitus (T2DM) with non-alcoholic fatty liver disease (NAFLD) based on the regulator effects of exercise on ferroptosis. MethodsEight 8-week-old male m/m mice were used as control group (Con, n=8), and db/db mice of the matched age were randomly divided into T2DM model group (db/db, n=8), exercise group (db+Exe, n=8), p38 mitogen-activated protein kinase (MAPK) inhibitor group (db+SB203580, n=8) and exercise combined with p38 MAPK inhibitor group (db+Exe+SB203580, n=8). After one-week adaptive feeding, the mice in the db+Exe group and db+Exe+SB203580 group underwent moderate intensity treadmill exercise for 40 min/d, 5 d/week lasting 8 weeks. The db+SB203580 group and db+Exe+SB203580 group were treated with SB203580 (a specific inhibitor of p38 MAPK) with a dose of 5 mg/kg, 5 d/week for 8 weeks. And the exercise intervention was performed 2 h later after the intraperitoneal injection of SB203580. The body weight and fasting blood glucose of mice were measured regularly every week during the experiment. After 24 h of the last intervention, the mice were weighted, the liver tissues were taken, weighted and the liver index was calculated. The pathological changes of liver were determined by Oil Red O and hematoxylin-eosin (HE) staining. The levels of blood lipids, liver function, Fe2+ and oxidative stress markers of liver were measured by enzyme linked immunosorbent assay (ELISA). The related mRNA expression levels of lipogenesis and inflammation were evaluated by quantitative reverse transcriptase-mediated PCR (qRT-PCR). The related protein expression levels of lipogenesis and ferroptosis in liver were determined by immunohistochemical (IHC) staining and Western blot. ResultsThe body weight, fasting blood glucose, liver index, blood lipid and transaminase levels in the db/db group were significantly increased compared with the Con group. HE and Oil Red O staining showed severe lipid accumulation and ballooning change in the liver of db/db mice. Biochemical tests showed that Fe2+ and MDA level of liver constitution homogenate increased, while GSH level decreased significantly. The results of qRT-PCR showed that the mRNA levels of MCP-1, IL-6, SREBF1 and ACC1 in liver tissue of db/db mice were all significantly increased. Western blot results showed that the expression levels of SREBF1, ACC1 increased, ferroptosis relative proteins were significantly decreased. The 8 weeks of exercise significantly reduced the rise in body weight, blood glucose, liver index and blood lipid levels in db/db mice. Exercise intervention also alleviated hepatic steatosis and reduced the expression levels of Fe2+, MDA, MCP-1, IL-6, ACC1 and SREBF1, upregulated the expression levels of GSH, NRF2, HO-1, SLC7A11 and GPX4 in liver tissue of db/db mice. The intervention of exercise combined with SB203580 significantly down-regulated the mRNA expression levels of ACC1, MCP-1, IL-6, reduced the levels of Fe2+ and MDA, and up-regulated the level of GSH in db/db mice. Compared with the db+Exe group, the expression of Fe2+, MDA, MCP-1, and SREBF1 in the liver of the db+Exe+SB203580 group mice significantly increased, while the expression level of GSH and expression levels of ferroptosis relative proteins also significantly decreased. In addition, compared with db+SB203580 group, the iron accumulation and lipid peroxidation in the liver of db+Exe+SB203580 group were significantly improved. ConclusionThe8-week treadmill exercise can effectively alleviate liver injury and steatosis, and its mechanism may be related to the inhibition of hepatocyte ferroptosis through p38 MAPK signal.
5.2-(2-Phenylethyl)chromones from agarwood of Aquilaria agallocha and their inhibitory activity against KRAS mutant NSCLC
Bao-juan XING ; Yi-fan FU ; He CUI ; Qian ZHOU ; Zhi-kang WANG ; Peng CAO ; Fa-ping BAI ; Xue-ting CAI
Acta Pharmaceutica Sinica 2024;59(9):2519-2528
The 2-(2-phenylethyl)chromones were separated from agarwood of
6.Study on insulin resistance induced by supernatant of bone marrow mesenchymal stem cells derived from diabetic mice
Bao-Juan LI ; Ke-Chun ZHOU ; ABUDOULA·Mi-re-he-mai-ti ; ZULIHUMA·Re-he-man ; Yu-Meng YE ; Yan-Zhi ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(14):2033-2037
Objective To investigate the role of bone marrow mesenchymal stem cells derived from diabetic mice and their paracrine roles in inducing insulin resistance(IR).Methods The mouse model of diabetes mellitus was established,bone marrow mesenchymal stem cells(BMSC)were extracted and cultured,and the culture supernatant(M-BMSC-CS)was collected.(1)Cell experiment:HepG2 hepatocytes were divided into normal low-glycemic culture group[cultured with low-glycemic DMEM(5.55 mmol·L-1)],M-BMSC-CS experimental group(M-BMSC-CS 75 μL),and high-glycemic and high-lipid control group(given 25 mmol·L-1 high-glycemic DMEM+0.25 mmol·L-1 palmitic acid);(2)Animal experiments:Mice were divided into normal mice group(0.9%NaCl by intraperitoneal injection)and M-BMSC-CS-m group(M-BMSC-CS by intraperitoneal injection of normal mice(injection dose 0.2 mL/10 g)].Glucose intake was measured by glucose oxidase method.The fluorescence intensity of Glut2 protein was detected by immunofluorescence.The expression of insulin signaling pathway protein was detected by Western blot.Test oral glucose tolerance(OGTT)and insulin tolerance(ITT).Results The glucose intakes of the normal low-glucose culture group,the M-BMSC-CS experimental group and the high-glucose and high-lipid control group were(2.96±0.05),(1.64±0.28)and(1.42±0.32)mmol·L-1,respectively;the fluorescence expressions of glucose transporter 2(Glut2)were 53.21±2.70,30.95±3.39 and 34.96±7.60,respectively;the protein expression levels of phosphorylated insulin receptor substrate 1-ser307(p-IRS-1ser307)were 0.46±0.21,1.09±0.24 and 0.91±0.16,respectively;phosphorylated protein kinase(p-AKT)protein expression levels were 0.94±0.05,0.59±0.06 and 0.53±0.05;Glut2 protein expression levels were 1.08±0.14,0.58±0.14 and 0.62±0.09,respectively.The above indexes in M-BMSC-CS experimental group were statistically significant compared with those in normal low-glycemic culture group(all P<0.05).Fasting blood glucose levels in the normal group and M-BMSC-CS-m group were(5.23±0.57)and(9.30±1.14)mmol·L-1;p-AKT protein expression level were 1.27±0.21 and 0.51±0.19;Glut2 protein expression level were 1.17±0.17 and 0.79±0.09,respectively.The above indexes in M-BMSC-CS-m group were significantly different from those in normal mouse group(P<0.05).Conclusion BMSC culture supernatant from diabetic mice induced insulin resistance of normal HepG2 hepatocytes in vitro and normal mice in vivo.
7.High glucose and high fat can induce bone marrow mesenchymal stem cells damage and abnormal ferroptosis signaling pathway
ABUDOULA·Mi-re-he-mai-ti ; ZULIHUMA·Re-he-man ; Bao-Juan LI ; Yu-Meng YE ; Yan-Zhi ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(17):2508-2512
Objective To investigate the relationship between the injury and ferroptosis of bone marrow mesenchymal stem cells(BMSCs)induced by high glucose and high fat.Methods BMSCs were divided into normal group(5.50 mmol·L-1 glucose)and high glucose and high fat(HGHF)group(25.00 mmol·L-1 glucose+0.25 mmol·L-1 palmitic acid).Assessment of cellular aging via β-galactosidase staining;enzyme linked immunosorbent assay(ELISA)were used to detect tumor necrosis factor-α(TNF-α),interleukin-10(IL-10)release levels;glutathione(GSH),malondialdehyde(MDA)and ferrous ion(Fe2+)detection kits were used to detect ferroptosis related indicators;Western blotting was used to detect the expression of ferroptosis related signaling pathway protein acyl-CoA synthetase long chain family member 4(ACS14)/arachidonate 15-lipoxygenase(ALOX15)/glutathione peroxidase 4(GPX4).Results The senescence rates of normal group HGHF group were(6.80±1.60)%and(13.00±1.58)%;the levels of TNF-α were(122.54±3.94)and(169.77±2.89)pg·mL-1;the levels of IL-10 were(155.16±3.97)and(105.15±7.30)pg·mL-1;GSH levels were 4.30±0.33 and 1.55±0.14;MDA levels were 2.94±0.10 and 5.84±0.10;Fe2+levels were 6.22±0.35 and 16.13±0.36;the relative expression levels of ACSL4 protein were 0.42±0.05 and 0.84±0.10;the relative ALOX15 protein were 0.61±0.25 and 1.06±0.11;the relative expression levels of GPX4 protein were 1.13±0.17 and 0.33±0.08,respectively.The above indexes in the HGHF group were significantly different from those in the normal group(all P<0.05).Conclusion 25 mmol·L-1 glucose combined with 0.25 mmol·L-1 palmitic acid for 24 h can be used as a suitable condition to induce BMSCs injury.ferroptosis plays an important role in BMSCs injury induced by high glucose and high fat.
8.Effects of Toona sinensis bark alcohol extract on mucosal barrier and gut microbiota in mice with ulcerative colitis
Jiangmei JIANG ; Hui ZHI ; Zehua HU ; Bao YANG ; Juan NIE ; Jian LONG ; Ming LI ; Keyun LIU
Chinese Journal of Pathophysiology 2024;40(9):1668-1677
AIM:To investigate the effects and underlying mechanism of Toona sinensis bark extract(TAE)on the colon mucosal barrier and gut microbiota in mice with ulcerative colitis(UC)induced by dextran sulfate sodium(DSS).METHODS:Sixty C57BL/6J mice were randomly assigned to control,model,and mesalazine(0.2 g/kg)groups,as well as TAE groups(low,medium,and high-doses equal to crude drug concentrations of 2.3,4.6 and 9.2 g/kg,respectively).The UC model was induced by drinking of 2.5%DSS,and mean while the drugs were administered for 10 days.The mice were then evaluated in terms of weight,disease activity index(DAI),colon length,spleen index,and pathological changes in the colon tissues.In addition,the level of apoptosis in colon tissues was assessed by terminal de-oxynucleotidyl transferase dUTP nick-end labeling(TUNEL)fluorescence staining,and the expression of related proteins was evaluated by Western blot,levels of inflammatory factors were determined by enzyme-linked immunosorbent assays(ELISA),and the activities of total superoxide dismutase(T-SOD)and catalase(CAT)and malondialdehyde(MDA)content were assessed by biochemical assays.Furthermore,the constitution and diversity of the gut microbiota were inves-tigated by 16S rRNA gene sequencing.RESULTS:Compared with the control group,mice in the model group showed significantly reduced body weights(P<0.01),and the colon length was shortened significantly(P<0.05).Marked in-creases in the DAI and spleen index were observed(P<0.01),along with severe damage to the colon mucosa(P<0.01).Mechanistically,the level of intestinal epithelial cell apoptosis was significantly raised(P<0.01).The model group showed markedly reduced expression of occludin and claudin-1(P<0.01),the level of IL-10,and activities of T-SOD and CAT in the colon tissues(P<0.01).While the levels of IL-6,IL-1β,TNF-α,and the MDA content were increased signif-icantly(P<0.05).The abundance and diversity of the gut microbiota were decreased in the model group(P<0.05).Com-pared with the model group,all these indicators were ameliorated by the administration of TAE(P<0.05).The abundance of pathogenic bacteria,including Proteobacteria and Escherichia-Shigella,was decreased remarkably(P<0.05),while that of probiotics,including Bacteroidota and Muribaculaceae,were increased significantly(P<0.05).The abundance and diversity of the gut microbiota were increased.CONCLUSION:Taken together,Toona sinensis bark alcohol extract can alleviate damage to the intestinal mucosa by suppressing the apoptosis of intestinal epithelial cell,reducing the inflam-matory response,and mitigating oxidative stress.Treatment with TAE could also maintain the homeostasis of the gut micro-biota by regulating the abundance,ultimately meliorate the function of intestinal mucosal barrier.
9.Treadmill Exercise Improves Cognitive Dysfunction in Diabetic Mice by Regulating PANoptosis Through the p38 MAPK Signaling Pathway
Ke-Yan SHENG ; Yu-Yan CHEN ; Yuan GAO ; Bao-Wen ZHANG ; Meng ZHANG ; Zhi WANG ; Xian-Juan KOU
Chinese Journal of Biochemistry and Molecular Biology 2024;40(7):987-998
Cognitive dysfunction is one of the serious complications of type 2 diabetes.Exercise interven-tion has a certain effect on improving diabetes cognition,but the exact process remains ambiguous.This research aims to explore the impact and molecular processes of treadmill exercises in enhancing cognitive impairments in type 2 diabetic mice.Ten m/m 8-week-old male mice were used as the control group.Forty db/db mice,each 8 weeks old and male,were categorized into four distinct groups with each group containing 10 mice,including the db/db group(model group),db+Exe group(exercise group),db+Exe+SB203580 group(exercise combined with the p38 MAPK inhibitor group),db+SB203580 group(p38 MAPK inhibitor group).db+Exe group and db+Exe+SB203580 group were subjected to treadmill running intervention(40 min/time,5 times/week,a total of 8 weeks).db+Exe+SB203580 and db+SB203580 group were intraperitoneally injected with SB203580(5 mg/kg,5 times/week,8 weeks)2 hours before treadmill exercise.The results of body weights and fasting blood glucose measurement showed that 8-week treadmill exercise could significantly reduce the body mass and fasting blood glucose levels(P<0.01);the results of water maze showed that treadmill exercise improved cognitive dysfunction in diabetic mice(P<0.05).Immunofluorescence staining revealed that treadmill exercise diminished the fluorescence intensity of NLRP3 in hippocampus,and there was a significant difference in CA1 and CA3 regions(P<0.05).Treadmill exercise reduced the fluorescence intensity of PI in the hippocampus,and there was a significant difference in the DG region(P<0.01).The results of qRT-PCR revealed that treadmill exercise decreased IL-1β and IL-18 mRNA levels in hippocampus,with a notable difference in IL-1β mRNA levels(P<0.05).Western blotting analysis revealed that treadmill exercise reduced the concentrations of Caspase3,Caspase9 and Bax in hippocampus(P<0.01),reduced the concentrations of TXNIP,NLRP3,GSDMD-N,IL-1β,IL-18,Cleaved Caspase1 and Caspasel(P<0.05),decreased the levels of p-RIPK1,RIPK1,p-RIPK3 and RIPK3(P<0.05).After adding p38 inhibitors,treadmill ex-ercise combined with p38 inhibitor intervention further inhibited the expression of Caspase3,TXNIP,GS-DMD-N and IL-18(P<0.05),and the expression levels of Caspase9,Bax,NLRP3,IL-1β,Cleaved Caspase 1 and Caspase 1 also showed a downward trend.The expression of RIPK1 and p-RIPK3 in-creased significantly(P<0.05),and the protein expression levels of p-p38,p-RIPK1 and RIPK3 showed an upward trend.In conclusion,treadmill running intervention can effectively improve the cogni-tive dysfunction in type 2 diabetic mice,and its mechanism is partly through the p38 MAPK signaling pathway to regulate PANoptosis.
10.The crosstalk of Wnt/β-catenin signaling and p53 in acute kidney injury and chronic kidney disease
Wen-Hua MING ; Lin WEN ; Wen-Juan HU ; Rong-Fang QIAO ; Yang ZHOU ; Bo-Wei SU ; Ya-Nan BAO ; Ping GAO ; Zhi-Lin LUAN
Kidney Research and Clinical Practice 2024;43(6):724-738
Wnt/β-catenin is a signaling pathway associated with embryonic development, organ formation, cancer, and fibrosis. Its activation can repair kidney damage during acute kidney injury (AKI) and accelerate the occurrence of renal fibrosis after chronic kidney disease (CKD). Interestingly, p53 has also been found as a key modulator in AKI and CKD in recent years. Meantime, some studies have found crosstalk between Wnt/β-catenin signaling pathways and p53, but more evidence is required on whether they have synergistic effects in renal disease progression. This article reviews the role and therapeutic targets of Wnt/β-catenin and p53 in AKI and CKD and proposes for the first time that Wnt/β-catenin and p53 have a synergistic effect in the treatment of renal injury.

Result Analysis
Print
Save
E-mail