1.Correlation analysis of bacterial resistance and antibiotic consumtion in our hospital
Chunlin YANG ; Hongbo WANG ; Jing LI ; Lijun ZHU ; Jianbo JIN ; Sunjie JIN ; Zhewen LU
Chinese Journal of Biochemical Pharmaceutics 2017;37(5):399-402
Objective To investigate the drug resistance of bacteria clinically isolated from Yuyao people's hospital and its relationship with antibiotic consumption, in order to provide basis for rational use of antibiotics in clinic.MethodsA total of 3178 strains of bacteria were detected in our hospital from the third quarter of 2015 to the second quarter of 2016.The drug resistance of bacteria, the consumption of antibacterial agents in each quarter, and their relationships were analyzed.ResultsThe major isolated bacteria was gram-negative bacteria, among which constituent ratio of Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa ranked the top 4.Gram-negative bacteria's resistance rates of several antibiotics were positively correlated with the utility rate of quinolones, and also had a different degree of positive correlation with the use of beta lactamase/inhibitor, aminoglycosides and carbapenems.Staphylococcus were the mainly gram positive bacteria, whose resistance rates to penicillin, ciprofloxacin, levofloxacin and erythromycin were positively correlated with the usage of the same type of antibiotics.ConclusionBacterial resistance rates are closely associated with the consumption of antimicrobials.Selecting antibacterial agents reasonably according to the results of drug susceptibility test is important to control the drug resistance of bacterial.
2.Transcription factor activator protein 2C contribute to molar development in mice
Liwei LIU ; Xue HAN ; Zhewen ZHU ; Zuolin WANG
Chinese Journal of Stomatology 2024;59(7):706-714
Objective:Explore the expression pattern of transcription factor activator protein 2C (TFAP2C) and identify the roles of Tfap2c during tooth development.Methods:Real-time fluorescence quantitative PCR (RT-qPCR) was used to analyze the relative expression level of Tfap2c in various organs of embryonic day(E)14.5 mouse embryos and mouse molar germs at E12.5-E18.5 and postnatal day (P)0-P7. The expression position of Tfap2c in mouse molar germs was demonstrated by frozen section immunofluorescence staining. Cultured mandibular molar germs were transfected with control small interfering RNA (siRNA) or Tfap2c siRNA to evaluate the effect of Tfap2c on tooth molar germs development, and RT-qPCR was used to detect the relative expression level of genes related to odontoblast expression. Dental mesenchymal cells were isolated from E14.5 molar germs and transfected with control siRNA or Tfap2c siRNA, cell counting kit 8 (CCK-8) and scratch healing test were applied to detect dental mesenchymal cell viability and migration.Results:Tfap2c was highly expressed in the early development period of mouse molar germs. Tfap2c was expressed in the epithelial and mesenchymal tissues of E13.5 mouse molar germs and there was no significant difference of relative expression of Tfap2c between them ( t=1.06, P=0.472). Tfap2c was expressed in mesenchymal tissues of E14.5 mouse molar germs and the relative expression of Tfap2c in mesenchymal tissues was significantly higher than epithelial tissues ( t=37.29, P<0.0001). For molar germs transfected with Tfap2c siRNA, the relative height of cusps (0.708±0.171) and the ratio of cusp height and crown height (0.321±0.068) was significantly lower than control group (1.000±0.287 and 0.483±0.166) ( t=2.79, P=0.012; t=2.85, P=0.015). But there was no significant difference in relative height (1.078±0.206, 0.993±0.254, t=0.83, P=0.419)and relative width (1.000±0.116, 0.999±0.122, t=0.01, P=0.992) of crowns between two groups. The relative expression level of genes related to odontoblast expression was decreased (Dspp: t=15.33, P<0.001; Dmp1: t=13.81, P<0.001). Tfap2c siRNA hinders cell migration in dental mesenchymal cells ( t=29.86, P=0.001), but there was no significant difference in CCK-8 absorbance value between two groups. The relative expression level of genes related to odontoblast expression was also decreased in dental mesenchymal cells transfected with Tfap2c siRNA (Dspp: t=3.86, P=0.031; Dmp1; t=4.36, P=0.022). Conclusions:Tfap2c highly expressed in the early morphogenesis period of mouse molar germs, mainly in mesenchymal tissues. Tfap2c affected the cusps formation of mouse molar germs and migration of dental mesenchymal cells.
3.Genome sequencing and analysis of BCG strain for vaccine production in China
Zhaoyang LIU ; Yongqiang ZHU ; Yingmei XU ; Yueye ZHAO ; Tiaoxia ZHU ; Leijun MA ; Zhewen CHEN
Shanghai Journal of Preventive Medicine 2023;35(3):213-218
ObjectiveTo conduct the sequencing and preliminarily analysis of the whole genome of BCG Shanghai D2PB302 strain (hereinafter referred to as BCG Shanghai D2 strain), which has been used exclusively for the vaccine production in China. MethodsThe DNA of of BCG Shanghai D2 strain (D2-JIA12-1) was extracted, and the whole genome was sequenced by Pacbio-RS Ⅱ. The sequence data was assembled by Smrtlink and polished with the illumina data. Genes, tRNA and rRNA were predicted based on the sequence data. The functional annotation of predicted genes was performed through BLASTP. The IVE-TB antigen gene and MTBVAC were selected as the target sequences to be compared with Mycobacterium tuberculosis H37Rv (NC_000962.3). ResultsThe sequence length of BCG Shanghai D2 strain was 4 045 232 bp, and the GC content was 65.66%. A total of 4 259 protein-encoding genes were predicted, with an average gene size of 933 bp. 2 476 genes had biological functions and others were hypothetical proteins.144 virulence genes were obtained by comparing with the VFDB. There were 29 type Ⅶ secretion system genes and 10 PE/PPE protein family genes. ConclusionThe whole genome sequence of BCG Shanghai D2 strain is clarified. It lays a broad foundation for subsequent detection of the stability of major antigen genes.
4.The Genome Sequence Archive Family:Toward Explosive Data Growth and Diverse Data Types
Chen TINGTING ; Chen XU ; Zhang SISI ; Zhu JUNWEI ; Tang BIXIA ; Wang ANKE ; Dong LILI ; Zhang ZHEWEN ; Yu CAIXIA ; Sun YANLING ; Chi LIANJIANG ; Chen HUANXIN ; Zhai SHUANG ; Sun YUBIN ; Lan LI ; Zhang XIN ; Xiao JINGFA ; Bao YIMING ; Wang YANQING ; Zhang ZHANG ; Zhao WENMING
Genomics, Proteomics & Bioinformatics 2021;19(4):578-583
The Genome Sequence Archive (GSA) is a data repository for archiving raw sequence data, which provides data storage and sharing services for worldwide scientific communities. Considering explosive data growth with diverse data types, here we present the GSA family by expanding into a set of resources for raw data archive with different purposes, namely, GSA (https://ngdc.cncb.ac.cn/gsa/), GSA for Human (GSA-Human, https://ngdc.cncb.ac.cn/gsa-human/), and Open Archive for Miscellaneous Data (OMIX, https://ngdc.cncb.ac.cn/omix/). Compared with the 2017 version, GSA has been significantly updated in data model, online functionalities, and web interfaces. GSA-Human, as a new partner of GSA, is a data repository specialized in human genetics-related data with controlled access and security. OMIX, as a critical complement to the two resources mentioned above, is an open archive for miscellaneous data. Together, all these resources form a family of resources dedicated to archiving explosive data with diverse types, accepting data submissions from all over the world, and providing free open access to all publicly available data in support of worldwide research activities.