1. Spatial-temporal analysis on the human immunodeficiency virus/acquired immunodeficiency syndrome among permanent residence and migrants in Shanghai, 2005-2015
Jialu ZUO ; Huangbo YUAN ; Qing YUE ; Zhenqiu LIU ; Qiwen FANG ; Zhen NING ; Tiejun ZHANG
Chinese Journal of Preventive Medicine 2018;52(12):1264-1268
Objective:
To describe the spatial and temporal characteristics of human immunodeficiency virus/acquired immunodeficiency syndrome(HIV/AIDS) in permanent residents and migrants in Shanghai during 2005 to 2015 and provide suggestions for the HIV/AIDS prevention.
Methods:
The data of HIV/AIDS was collected from the National HIV/AIDS Comprehensive Information Management System based on report date. The population data was collected from the statistical yearbook of Shanghai. Spatial analysis was conducted using the hotspots model in ArcGIS. SaTScan software was employed to determine the distribution of HIV clusters in space, time or both.
Results:
During 2005 to 2015, a total of 13 498 cases of HIV/AIDS were reported in Shanghai. The prevalence of HIV increased from 0.025/105 (450 cases) to 0.093/105 (2 236 cases). The prevalence of AIDS increased from 0.002/105 (32 cases) to 0.028/105 (683 cases). Hotspot analysis showed that the hot spot of incidence of migrants had moved from Hongkou (2005) (
2.Zhuangtongyin Modulates Ferroptosis via the Nrf2-SCL7A11/xCT-Gpx4 Pathway to Im-prove Cerebral Ischemia-reperfusion Injury
Chengyi WANG ; Yuefang CAI ; Zhenqiu NING ; Minzhen DENG ; Jingbo SUN ; Kim Sookja CHUNG ; Yan LI ; Xiao CHENG
Journal of Sun Yat-sen University(Medical Sciences) 2024;45(4):539-548
[Objective]To investigate the protective effect of Zhuangtongyin on the Middle Cerebral Artery Occlusion(MCAO)model by modulating ferroptosis through the Nrf2-SCL7A11/xCT-Gpx4 pathway and its underlying mechanism.[Methods]C57BL/6J mice were randomly divided into Sham operation group(Sham),model group(MCAO),low-dose Zhuangtongyin group(ZTY-L),high-dose Zhuangtongyin group(ZTY-H),with 5 mice in each group.The MCAO group was modelled by silica gel embolization,the middle cerebral artery of mice was embolized for 1h,then the silica gel was pulled out and reperfusion was performed after 72 h;and the other operations in the Sham group were the same as those in the MCAO group except that the thread plug was not inserted.The neural function of mice was evaluated by Zea-Longa method.TTC staining was used to evaluate the volume of cerebral infarction.The level of brain injury was evaluated by HE staining and Nissl staining.Prussian blue staining and the expression of iron transport-related carrier receptors TfR1 and DMT1 on mRNA level was detected by qPCR to evaluate the iron ion deposition level in mice brain.The expression of lipid peroxidation-related gene ACSL4 on mRNA level was detected by qPCR,and the content of 4-HNE was detected by ELISA kit to evaluate the lipid peroxidation level of mice brain.The expressions of ferroptosis marker PTGS2 mRNA level was detected by qPCR.The expressions of Nrf2,SCL7A11/xCT,Gpx4 in mice brain tissue were detected by Western-blot and immunofluorescence.[Results]Zhuangtongyin improved the nerve function of mice after MCAO(P<0.05)and the cerebral infarction volume of mice(P<0.05)and alleviate the pathological injury of cerebral cortex cells after MCAO operation.Zhuangtongyin attenuated the accumulation of trivalent iron ions in the brain tissue of mice following MCAO.Additionally,Zhuangtongyin downregulated the expression of TfR1 and DMT1 mRNA(P<0.001),a transporter associated with cellular iron ion uptake,in the brains of post-MCAO mice.Furthermore,Zhuangtongyin reduced levels of lipid peroxidation product 4-HNE(P<0.001)and suppressed ACSL4 mRNA expression in brain tissue post-MCAO(P<0.001).Besides,Zhuangtongyin downregulated the expression of PTGS2 mRNA(P<0.001),in the brains of post-MCAO mice.Zhuangtongyin increased the expression of nrf2 into the nucleus(P<0.001),and increased the expression of xCT and Gpx4 in neurons after MCAO(P<0.001).[Conclusion]Zhuangtongyin can enhance the nerve function and reduce cerebral infarction volume in MCAO/R mice,alleviate the pathological damage of cerebral cortex cells,and modulate the expression of key signaling molecules in the Nrf2-SCL7A11/xCT-Gpx4 pathway.Therefore,it is suggested that the mechanism by which Zhuangtongyin improves MCAO/R injury in mice may involve regulating ferroptosis through the Nrf2-SCL7A11/xCT-GPX4 pathway.
3.Effect of Dingzhi Xiaowan on PI3K/Akt/mTOR/HIF-1α Pathway in Post-stroke Cognitive Impairment Model Mice
Han ZHANG ; Yu WANG ; Xiaoqin ZHONG ; Zhenqiu NING ; Dafeng HU ; Minzhen DENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):1-11
ObjectiveTo investigate the effect of Dingzhi Xiaowan (DZXW) in post-stroke cognitive impairment (PSCI) model mice. MethodsThe cerebral ischemia-reperfusion injury model of mice was established by using the middle cerebral artery occlusion method. Forty C57BL/6 male mice were randomly divided into the sham operation group, model group, low-dose DZXW group (1.43 g·kg-1), and high-dose DZXW group (2.56 g·kg-1), with 10 mice in each group. Both the sham operation group and the model group were treated with equal amounts of normal saline by gavage, and the above four groups of mice were gavaged once a day for 30 consecutive days. Morris water maze test was used to evaluate the learning memory ability of mice. Serum levels of amyloid precursor protein (APP), amyloid 42 (Aβ42), acetylcholinesterase (AChE), and superoxide dismutase (SOD) were measured by enzyme-linked immunosorbent assay (ELISA). Deoxyribonucleotide end transferase-mediated nick end labelling (TUNEL) assay was applied to detect the degree of apoptosis in the mouse's hippocampal neurons. Western blot was used to detect the protein expression of phosphoinositol-3 kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), hypoxia-inducible factor 1-alpha (HIF-1α), B-cell lymphoma 2 (Bcl-2) homologous structural domain protein (Beclin1), sequestosome 1 (p62), microtubule-associated protein light chain 3 (LC3), Bcl-2, and Bcl-2-associated X protein (Bax) in hippocampal tissue. Prussian blue staining was used to detect iron deposition in hippocampal tissue. Transmission electron microscopy was taken to observe the ultrastructure of the mouse's hippocampal neurons. ResultsCompared with the sham operation group, the latency, APP, Aβ42, AChE, TUNEL positivity, ferric ion deposition, HIF-1α, Beclin1, Bax, and LC3Ⅱ/Ⅰ were significantly increased in the model group (P<0.01), while the number of crossing platforms, SOD, p-PI3K, p-Akt, p-mTOR, p62, and Bcl-2 were significantly decreased (P<0.01). Compared with the model group, the latency, APP, Aβ42, AChE, TUNEL positivity rate, ferric ion deposition, HIF-1α, Beclin1, Bax, and LC3Ⅱ/Ⅰ were significantly reduced in the DZXW groups (P<0.05), while the number of crossing platforms, SOD, p-PI3K, p-Akt, p-mTOR, p62, and Bcl-2 were significantly higher (P<0.05). ConclusionDZXW can alleviate cognitive impairment induced by oxidative stress-aggravated hippocampal neuronal damage in PSCI model mice by modulating the PI3K/Akt/mTOR/HIF-1α autophagy signalling pathway.