1.Continuous Improvement of Automated Pharmacies in Hospitals
Hua MEI ; Rongjie ZHENG ; Hongbin LIN ; Huiqin LU ; Xinchang ZHU
Modern Hospital 2017;17(5):682-685
Objective To adjust the layout of secondary medicine shelves in hospital pharmacy for outpatient services and optimize the varieties of automated equipment to improve working process and promote human-machine cooperation.Methods This article discussed the adjustment of the layout of secondary medicine shelves in hospital pharmacy for outpatient services and the optimization of varieties of automated equipment for storing by analyzing actual problems in automated system and clinical drug uses and the requirements of the automated equipment for drug storage respectively to improve working process and to adapt to the operation of outpatient pharmacy automated system.Results Dispensing efficiency of outpatient pharmacy automated system was improved, patients′ waiting time was significantly shortened, and the workload of pharmacists was decreased.Conclusion Optimization of hospital pharmacy drug delivery system and its operation can obviously improve work efficiency, shorten patients′ waiting time and reduce dispensing error, thus ensuring the safety of medication.
2.Locking compression plate for the treatment of intra-articular calcaneal fractures.
Chao SHEN ; Yang SHEN ; Li-Zheng DAI ; Zhen PAN
China Journal of Orthopaedics and Traumatology 2010;23(3):225-227
Adult
;
Bone Plates
;
Calcaneus
;
injuries
;
surgery
;
Female
;
Fracture Fixation, Internal
;
Fractures, Bone
;
surgery
;
Humans
;
Male
;
Middle Aged
;
Treatment Outcome
;
Young Adult
3.Genome Warehouse: A Public Repository Housing Genome-scale Data
Chen MEILI ; Ma YINGKE ; Wu SONG ; Zheng XINCHANG ; Kang HONGEN ; Sang JIAN ; Xu XINGJIAN ; Hao LILI ; Li ZHAOHUA ; Gong ZHENG ; Xiao JINGFA ; Zhang ZHANG ; Zhao WENMING ; Bao YIMING
Genomics, Proteomics & Bioinformatics 2021;19(4):584-589
The Genome Warehouse (GWH) is a public repository housing genome assembly data for a wide range of species and delivering a series of web services for genome data submission, storage, release, and sharing. As one of the core resources in the National Genomics Data Center (NGDC), part of the China National Center for Bioinformation (CNCB;https://ngdc.cncb.ac.cn), GWH accepts both full and partial (chloroplast, mitochondrion, and plasmid) genome sequences with different assembly levels, as well as an update of existing genome assemblies. For each assembly, GWH collects detailed genome-related metadata of biological project, biological sample, and genome assembly, in addition to genome sequence and annotation. To archive high-quality genome sequences and annotations, GWH is equipped with a uniform and standardized procedure for quality control. Besides basic browse and search functionalities, all released genome sequences and annotations can be visualized with JBrowse. By May 21, 2021, GWH has received 19,124 direct submissions covering a diversity of 1108 species and has released 8772 of them. Collectively, GWH serves as an important resource for genome-scale data management and provides free and publicly accessible data to support research activities throughout the world. GWH is publicly accessible at https://ngdc.cncb.ac.cn/gwh.
4.Common Postzygotic Mutational Signatures in Healthy Adult Tissues Related to Embryonic Hypoxia
Hong YAQIANG ; Zhang DAKE ; Zhou XIANGTIAN ; Chen AILI ; Abliz AMIR ; Bai JIAN ; Wang LIANG ; Hu QINGTAO ; Gong KENAN ; Guan XIAONAN ; Liu MENGFEI ; Zheng XINCHANG ; Lai SHUJUAN ; Qu HONGZHU ; Zhao FUXIN ; Hao SHUANG ; Wu ZHEN ; Cai HONG ; Hu SHAOYAN ; Ma YUE ; Zhang JUNTING ; Ke YANG ; Wang QIAN-FEI ; Chen WEI ; Zeng CHANGQING
Genomics, Proteomics & Bioinformatics 2022;20(1):177-191
Postzygotic mutations are acquired in normal tissues throughout an individual's lifetime and hold clues for identifying mutagenic factors.Here,we investigated postzygotic mutation spectra of healthy individuals using optimized ultra-deep exome sequencing of the time-series samples from the same volunteer as well as the samples from different individuals.In blood,sperm,and muscle cells,we resolved three common types of mutational signatures.Signatures A and B represent clock-like mutational processes,and the polymorphisms of epigenetic regulation genes influence the pro-portion of signature B in mutation profiles.Notably,signature C,characterized by C>T transitions at GpCpN sites,tends to be a feature of diverse normal tissues.Mutations of this type are likely to occur early during embryonic development,supported by their relatively high allelic frequencies,presence in multiple tissues,and decrease in occurrence with age.Almost none of the public datasets for tumors feature this signature,except for 19.6%of samples of clear cell renal cell carcinoma with increased activation of the hypoxia-inducible factor 1(HIF-1)signaling pathway.Moreover,the accumulation of signature C in the mutation profile was accelerated in a human embryonic stem cell line with drug-induced activation of HIF-1α.Thus,embryonic hypoxia may explain this novel signature across multiple normal tissues.Our study suggests that hypoxic condition in an early stage of embryonic development is a crucial factor inducing C>T transitions at GpCpN sites;and indi-viduals'genetic background may also influence their postzygotic mutation profiles.
5.ORP8 acts as a lipophagy receptor to mediate lipid droplet turnover.
Maomao PU ; Wenhui ZHENG ; Hongtao ZHANG ; Wei WAN ; Chao PENG ; Xuebo CHEN ; Xinchang LIU ; Zizhen XU ; Tianhua ZHOU ; Qiming SUN ; Dante NECULAI ; Wei LIU
Protein & Cell 2023;14(9):653-667
Lipophagy, the selective engulfment of lipid droplets (LDs) by autophagosomes for lysosomal degradation, is critical to lipid and energy homeostasis. Here we show that the lipid transfer protein ORP8 is located on LDs and mediates the encapsulation of LDs by autophagosomal membranes. This function of ORP8 is independent of its lipid transporter activity and is achieved through direct interaction with phagophore-anchored LC3/GABARAPs. Upon lipophagy induction, ORP8 has increased localization on LDs and is phosphorylated by AMPK, thereby enhancing its affinity for LC3/GABARAPs. Deletion of ORP8 or interruption of ORP8-LC3/GABARAP interaction results in accumulation of LDs and increased intracellular triglyceride. Overexpression of ORP8 alleviates LD and triglyceride deposition in the liver of ob/ob mice, and Osbpl8-/- mice exhibit liver lipid clearance defects. Our results suggest that ORP8 is a lipophagy receptor that plays a key role in cellular lipid metabolism.
Animals
;
Mice
;
Lipid Droplets
;
Autophagy
;
Autophagosomes
;
Homeostasis
;
Triglycerides