1.Herbal Textual Research on Quisqualis Fructus in Famous Classical Formulas
Xiuping WEN ; Shiying CHEN ; Ying TAN ; Guanwen ZHENG ; Huilong XU ; Wen XU ; Chengzi YANG ; Zehao HUANG ; Yu LIN ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):225-237
This article systematically analyzed the historical evolution of the origin, scientific name, producing area, quality evaluation, harvesting and processing, and other aspects of Quisqualis Fructus by consulting the ancient materia medica, medical books, prescription books, local literature and combining with the modern literature and standards, summarized and explored the development rules of its medicinal properties and efficacy along with their underlying causes, in order to provide support for the development and utilization of famous classical formulas containing this herb. According to the textual research, Shijunzi was first recorded as Liuqiuzi in Nanfang Caomuzhuang of the Jin dynasty, and the name of Shijunzi was first used in Kaibao Bencao of the Song dynasty, which has been consistently used throughout subsequent dynasties, and there were also aliases such as Junziren, Sijunzi, and Dujilizi. The mainstream source of Quisqualis Fructus used in the past dynasties has been the dried mature fruits of Quisqualis indica, a plant belonging to the family Combretaceae. In modern times, its variety Q. indica var. villosa has also been recorded as the medicinal material of Quisqualis Fructus. In 2007, the Flora of China(English edition) designated Q. indica var. villosa as a synonym of Q. indica. Today, the accepted name of Shijunzi is updated to Combretum indicum. According to ancient herbal records, the producing areas of Quisqualis Fructus were Guangdong, Hong Kong, Macao, Guangxi, Hainan, Sichuan and Fujian, and then gradually expanded to Yunnan, Taiwan, Jiangxi and Guizhou. Since the Song dynasty, two major production regions have gradually emerged in Sichuan, Chongqing and Fujian. Currently, it is primarily cultivated in Chongqing, Guangxi and other areas, with Chongqing yielding the highest output. Since modern times, superior quality has been defined by large size, a purple-black surface, plump grains, and a yellowish-white kernel. According to ancient herbal records, the harvesting period of Quisqualis Fructus was the July and August of the lunar calendar, mostly used raw after shelling or with the shell intact, it underwent processing methods such as cleaning, slicing, mixing, steaming, roasting, stewing, and frying. Currently, the harvesting period is autumn, followed by sun-drying or low-heat drying, with processing methods including cleaning, stir-frying, and stewing. In ancient and modern literature, the records of the properties, functions and indications of Quisqualis Fructus are basically the same, that is, sweet in taste, warm in nature, predominantly non-toxic, belonging to the spleen and stomach meridians. It possesses effects of insecticide, decontamination and invigorating spleen for ascariasis, enterobiasis, abdominal pain due to worm accumulation and infantile malnutrition.The contraindications for use primarily include avoiding consumption by individuals without parasitic infestations, limiting use for those with spleen-stomach deficiency-cold, refraining from drinking hot tea during medication, and avoiding excessive intake. Based on the textual research, it is suggested that the dried mature fruits of Q. indica should be used as the medicinal material for the development of famous classical formulas containing Quisqualis Fructus. Processing methods may be chosen according to prescription requirements, and the raw products is recommended for medicinal use if not specified.
2.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
3.Evaluation on repeatability and accuracy of iCare IC100 tonometer in measuring intraocular pressure
Yue PENG ; Ping ZHAO ; Juan TAN ; Rui LIU ; Yiping ZHENG ; Jiangping HUANG
International Eye Science 2025;25(3):494-498
AIM: To evaluate the repeatability and accuracy of iCare IC100 tonometer in measuring intraocular pressure(IOP)by comparing the correlation and difference with Goldmann applanation tonometry(GAT)and non-contact tonometer(NCT), and to compare the correlation of the three types of IOP measurement with the central corneal thickness(CCT).METHODS: Prospective study. A total of 90 outpatients(90 eyes)in Liaoning Aier Eye Hospital from March 2019 to May 2019 were randomly selected as study subjects. All patients were measured IOP using iCare IC100, NCT, and GAT. The interclass correlation coefficient(ICC)was used to evaluate the repeatability of IOP measured 3 times consecutively using an intraocular tonometer. The correlation and consistency of iCare IC100, GAT and NCT were compared by one-way ANOVA, Pearson linear correlation analysis and Bland-Altman analysis. The linear regression analysis was used to analyze the correlation of the three tonometers with CCT.RESULTS: The mean IOP measured with iCare IC100, GAT and NCT was 19.74±6.90, 19.88±7.07 and 18.47±6.31 mmHg, respectively(F=1.180, P=0.309). The measurements of iCare IC100 with GAT, iCare IC100 with NCT and GAT with NCT were all positively correlated(r=0.930, 0.946, 0.918, all P<0.05), the Bland-Altman analysis showed that the mean differences between iCare IC100 and GAT, iCare IC100 and NCT, GAT and NCT were -0.142±2.61, 1.27±2.24, and 1.41±2.81 mmHg, respectively, with 97%(87/90), 96%(86/90), and 97%(87/90)IOP differences distributed within their 95% confidence intervals. The IOP measured with iCare IC100 and CCT, GAT and CCT and NCT and CCT were all positively correlated(r=0.426, 0.353, 0.451, all P<0.01). The linear regression equations between iCare IC100, GAT and NCT measurement and CCT were iCare IC100 IOP=-19.62+0.074×CCT; GAT IOP=-13.54+0.063×CCT; NCT IOP=-19.65+0.072×CCT; that is, for every 10 μm increase in CCT, iCare IC100 measurement increased by 0.74 mmHg, GAT measurement increased by 0.63 mmHg, and NCT measurement increased by 0.72 mmHg.CONCLUSION: The iCare IC100 tonometer has good repeatability and accuracy in measuring IOP, and the CCT has a greater impact on the measurement of iCare IC100 than the GAT and NCT.
4.Evaluation on repeatability and accuracy of iCare IC100 tonometer in measuring intraocular pressure
Yue PENG ; Ping ZHAO ; Juan TAN ; Rui LIU ; Yiping ZHENG ; Jiangping HUANG
International Eye Science 2025;25(3):494-498
AIM: To evaluate the repeatability and accuracy of iCare IC100 tonometer in measuring intraocular pressure(IOP)by comparing the correlation and difference with Goldmann applanation tonometry(GAT)and non-contact tonometer(NCT), and to compare the correlation of the three types of IOP measurement with the central corneal thickness(CCT).METHODS: Prospective study. A total of 90 outpatients(90 eyes)in Liaoning Aier Eye Hospital from March 2019 to May 2019 were randomly selected as study subjects. All patients were measured IOP using iCare IC100, NCT, and GAT. The interclass correlation coefficient(ICC)was used to evaluate the repeatability of IOP measured 3 times consecutively using an intraocular tonometer. The correlation and consistency of iCare IC100, GAT and NCT were compared by one-way ANOVA, Pearson linear correlation analysis and Bland-Altman analysis. The linear regression analysis was used to analyze the correlation of the three tonometers with CCT.RESULTS: The mean IOP measured with iCare IC100, GAT and NCT was 19.74±6.90, 19.88±7.07 and 18.47±6.31 mmHg, respectively(F=1.180, P=0.309). The measurements of iCare IC100 with GAT, iCare IC100 with NCT and GAT with NCT were all positively correlated(r=0.930, 0.946, 0.918, all P<0.05), the Bland-Altman analysis showed that the mean differences between iCare IC100 and GAT, iCare IC100 and NCT, GAT and NCT were -0.142±2.61, 1.27±2.24, and 1.41±2.81 mmHg, respectively, with 97%(87/90), 96%(86/90), and 97%(87/90)IOP differences distributed within their 95% confidence intervals. The IOP measured with iCare IC100 and CCT, GAT and CCT and NCT and CCT were all positively correlated(r=0.426, 0.353, 0.451, all P<0.01). The linear regression equations between iCare IC100, GAT and NCT measurement and CCT were iCare IC100 IOP=-19.62+0.074×CCT; GAT IOP=-13.54+0.063×CCT; NCT IOP=-19.65+0.072×CCT; that is, for every 10 μm increase in CCT, iCare IC100 measurement increased by 0.74 mmHg, GAT measurement increased by 0.63 mmHg, and NCT measurement increased by 0.72 mmHg.CONCLUSION: The iCare IC100 tonometer has good repeatability and accuracy in measuring IOP, and the CCT has a greater impact on the measurement of iCare IC100 than the GAT and NCT.
5.Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells
Hongliang LI ; Bingqian YE ; Jiping TIAN ; Bofan WANG ; Yiwen ZHA ; Shuying ZHENG ; Tan MA ; Wenwen ZHUANG ; Won Sun PARK ; Jingyan LIANG
The Korean Journal of Physiology and Pharmacology 2025;29(2):245-255
Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR –/–mice given high-fat diet to investigate the effects of monotropein on atherosclerosis.Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
6.Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells
Hongliang LI ; Bingqian YE ; Jiping TIAN ; Bofan WANG ; Yiwen ZHA ; Shuying ZHENG ; Tan MA ; Wenwen ZHUANG ; Won Sun PARK ; Jingyan LIANG
The Korean Journal of Physiology and Pharmacology 2025;29(2):245-255
Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR –/–mice given high-fat diet to investigate the effects of monotropein on atherosclerosis.Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
7.Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells
Hongliang LI ; Bingqian YE ; Jiping TIAN ; Bofan WANG ; Yiwen ZHA ; Shuying ZHENG ; Tan MA ; Wenwen ZHUANG ; Won Sun PARK ; Jingyan LIANG
The Korean Journal of Physiology and Pharmacology 2025;29(2):245-255
Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR –/–mice given high-fat diet to investigate the effects of monotropein on atherosclerosis.Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
8.Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells
Hongliang LI ; Bingqian YE ; Jiping TIAN ; Bofan WANG ; Yiwen ZHA ; Shuying ZHENG ; Tan MA ; Wenwen ZHUANG ; Won Sun PARK ; Jingyan LIANG
The Korean Journal of Physiology and Pharmacology 2025;29(2):245-255
Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR –/–mice given high-fat diet to investigate the effects of monotropein on atherosclerosis.Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
9.Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells
Hongliang LI ; Bingqian YE ; Jiping TIAN ; Bofan WANG ; Yiwen ZHA ; Shuying ZHENG ; Tan MA ; Wenwen ZHUANG ; Won Sun PARK ; Jingyan LIANG
The Korean Journal of Physiology and Pharmacology 2025;29(2):245-255
Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR –/–mice given high-fat diet to investigate the effects of monotropein on atherosclerosis.Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
10. Determination of docusate sodium by ion-pair high-performance liquid chromatography
Lirong CAI ; Haiping SHU ; Sha XIAO ; Yue TAN ; Jinfeng ZHENG ; Changliang LI ; Yanming LIU
Journal of China Pharmaceutical University 2025;56(2):183-187
To reduce the dependency on high-carbon-load chromatographic columns,a new method has been established for the determination of the content of docusate sodium using ion-pair high-performance liquid chromatography (IP-HPLC). Tetrapropylammonium chloride was used as the ion-pair reagent with a mobile phase, composition of acetonitrile:10 mmol/L tetrapropylammonium chloride solution = 66∶34, adjusting pH to 6.5 with 0.1% phosphoric acid solution,flow rate of 1.5 mL/min, detection wavelength of 214 nm,column temperature of 35 °C, and an injection volume of 25 μL,and quantified by an external standard method. The main peak of docusate sodium exhibited a tailing factor of 1.34. The method showed good linearity within the range of 0.02 mg/mL to 0.40 mg/mL, with a correlation coefficient (r) of 0.999 9. It also demonstrated good repeatability, with recovery ranging from 97.0% to 98.2% (n=6). The quantification limit was 3.31 μg/mL, and the detection limit was 2.76 μg/mL.In summary,the new method shows good durability, a wide linear range, and high sensitivity, it is suitable for the determination of docusate sodium.

Result Analysis
Print
Save
E-mail