1.Nitric oxide promotes the differentiation of neural stem cells in vitro derived from the subventricular zone of neonatal rats.
Zhe-Yan SA ; Shi-Yu GUO ; Li-Dong SHAN ; Shan GONG ; Hong GAO ; Tadashi HISAMITSU ; Xing-Hong JIANG
Chinese Journal of Applied Physiology 2010;26(3):359-364
OBJECTIVETo observe the effect of nitric oxide (NO) on the differentiation of neural stem cells (NSCs) derived from subventricular zone (SVZ) of neonatal rats in vitro.
METHODSConventional method was used to isolate and culture the NSCs from SVZ. Diethylenetriamine/NO(DETA/NO) was used as NO donor and Nitro-L-arginine methylester (L-NAME) was used as inhibitor of nitric oxide synthase (NOS). The immunofluorescence was used to identify the expression of nestin (a marker of NSCs), beta-III-tubulin (Tuj-1, a marker of neurons), glial fibrillary acidic protein (GFAP, a marker of astrocytes) and nNOS. The concentration of NO in medium was measured by Greiss assay.
RESULTSCultured neurospheres were nestin-, BrdU- and nNOS-positive. After treatment with 40 micromol/L, 50 micromol/L and 60 micromol/L of DETA/NO for 5 days, the concentration of NO released was increased significantly (P < 0.01) as compared with that of the control group. The percentage of both differentiated neurons and astrocytes was increased significantly (P < 0.01 and P < 0.05) as compared with that of the control group. After treatment with 100 micromol/L, 150 micromol/L and 200 micromol/L of L-NAME for 5 days, the concentration of NO released was decreased as compared with that of the control group (P < 0.05). The percentage of both differentiated neurons and astrocytes were decreased as compared with that of the control group (P < 0.05).
CONCLUSIONNO could directly promote the differentiation of NSCs derived from rat subventricular zone in vitro.
Animals ; Animals, Newborn ; Cell Differentiation ; drug effects ; Cells, Cultured ; Cerebral Ventricles ; cytology ; Neural Stem Cells ; cytology ; Nitric Oxide ; pharmacology ; Rats ; Rats, Sprague-Dawley
2.Effects of electroacupuncture on rats with cognitive impairment: An iTRAQ-based proteomics analysis.
Zhe-Yan SA ; Jin-Sen XU ; Xiao-Hua PAN ; Shu-Xia ZHENG ; Qian-Ru HUANG ; Long WAN ; Xiao-Xiang ZHU ; Cai-Lian LAN ; Xiao-Ran YE
Journal of Integrative Medicine 2023;21(1):89-98
OBJECTIVE:
The study explores the effects of electroacupuncture (EA) at the governing vessel (GV) on proteomic changes in the hippocampus of rats with cognitive impairment.
METHODS:
Healthy male rats were randomly divided into 3 groups: sham, model and EA. Cognitive impairment was induced by left middle cerebral artery occlusion in the model and EA groups. Rats in the EA group were treated with EA at Shenting (GV24) and Baihui (GV20) for 7 d. Neurological deficit was scored using the Longa scale, the learning and memory ability was detected using the Morris water maze (MWM) test, and the proteomic profiling in the hippocampus was analyzed using protein-labeling technology based on the isobaric tag for relative and absolute quantitation (iTRAQ). The Western blot (WB) analysis was used to detect the proteins and validate the results of iTRAQ.
RESULTS:
Compared with the model group, the neurological deficit score was significantly reduced, and the escape latency in the MWM test was significantly shortened, while the number of platform crossings increased in the EA group. A total of 2872 proteins were identified by iTRAQ. Differentially expressed proteins (DEPs) were identified between different groups: 92 proteins were upregulated and 103 were downregulated in the model group compared with the sham group, while 142 proteins were upregulated and 126 were downregulated in the EA group compared with the model group. Most of the DEPs were involved in oxidative phosphorylation, glycolipid metabolism and synaptic transmission. Furthermore, we also verified 4 DEPs using WB technology. Although the WB results were not exactly the same as the iTRAQ results, the expression trends of the DEPs were consistent. The upregulation of heat-shock protein β1 (Hspb1) was the highest in the EA group compared to the model group.
CONCLUSION
EA can effect proteomic changes in the hippocampus of rats with cognitive impairment. Hspb1 may be involved in the molecular mechanism by which acupuncture improves cognitive impairment.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Electroacupuncture
;
Proteomics
;
Cognitive Dysfunction/therapy*
;
Hippocampus