1.Effect of miR-1246 on high glucose-induced retinal microvascular endothelial cells by regulating METTL3-mediated m6A modification
Milu ZHOU ; Lin CHEN ; Zuofang ZHAO ; Daqing WANG
International Eye Science 2026;26(1):7-15
AIM:To explore the effect of miR-1246 on high glucose-induced retinal microvascular endothelial cells(RMECs)injury by regulating methyltransferase like 3(METTL3)mediated sirtuin 1(SIRT1)N6-methyladenosine(m6A)modification.METHODS:Dual luciferase assay was used to detect miR-1246 regulation of METTL3 expression; RMECs cells were divided into control group, high glucose(HG)group, high glucose+knocking down control(HG+anti-miR-NC)group, high glucose+knocking down miR-1246 expression(HG+anti-miR-1246)group, high glucose+overexpression control(HG+NC)group, high glucose+overexpression METTL3(HG+METTL3)group, high glucose+overexpression miR-1246+control(HG+miR-1246+NC)group, and high glucose+overexpression miR-1246+METTL3(HG+miR-1246+METTL3)group. After induction of high glucose for 48 h, CCK-8 method was used to detect cell survival; Annexin V-FITC/PI method was used to detect cell apoptosis; Transwell experiment was used to detect cell migration and invasion; ELISA method was used to detect cell oxidative stress and inflammation levels; Colorimetric method was used to detect m6A methylation level in total RNA; MeRIP-qPCR method was used to detect SIRT1 m6A methylation level; Real-time quantitative PCR was used to detect miR-1246, METTL3, SIRT1 mRNA expression in cells; Western blot was used to detect METTL3, SIRT1 and endothelial mesenchymal transition(EndMT)markers protein expression in cells.RESULTS: The MiR-1246 regulated METTL3 expression. Compared with the control group, cell survival rate was decreased in the HG group, apoptosis rate was increased, and the number of migrating and invading cells were increased, lactate dehydrogenase(LDH)activity, tumor necrosis factor-α(TNF-α), and interleukin(IL)-6 levels in cell culture supernatant were increased, IL-10 level was decreased, malondialdehyde(MDA)level was increased, superoxide dismutase(SOD)activity was decreased, miR-1246 expression was increased, total RNA m6A level and SIRT1 m6A level were decreased, METTL3, SIRT1, cluster of differentiation 31(CD31)and vascular endothelial cadherin(VE-cadherin)expression were decreased, while Vimentin and Snail1 expression were increased(all P<0.05); compared with the HG+anti-miR-NC group, cell survival rate was increased in the HG+anti-miR-1246 group, apoptosis rate was decreased, and the number of migrating and invading cells were decreased, LDH activity, TNF-α, and IL-6 levels in cell culture supernatant were decreased, IL-10 level was increased, MDA level was decreased, SOD activity was increased, miR-1246 expression was decreased, total RNA m6A level and SIRT1 m6A level were increased, METTL3, SIRT1, CD31 and VE-cadherin expression were increased, while Vimentin and Snail1 expression were decreased(all P<0.05); compared with the HG+NC group, cell survival rate was increased in the HG+METTL3 group, apoptosis rate was decreased, and the number of migrating and invading cells were decreased, LDH activity, TNF-α, and IL-6 levels in cell culture supernatant were decreased, IL-10 level was increased, MDA level was decreased, SOD activity was increased, miR-1246 expression was decreased, total RNA m6A level and SIRT1 m6A level were increased, METTL3, SIRT1, CD31 and VE-cadherin expression were increased, while Vimentin and Snail1 expression were decreased(all P<0.05); compared with the HG+miR-1246+NC group, cell survival rate was increased in the HG+miR-1246+METTL3 group, apoptosis rate was decreased, and the number of migrating and invading cells were decreased, LDH activity, TNF-α, and IL-6 levels in cell culture supernatant were decreased, IL-10 level was increased, MDA level was decreased, SOD activity was increased, miR-1246 expression was decreased, total RNA m6A level and SIRT1 m6A level were increased, METTL3, SIRT1, CD31 and VE-cadherin expression were increased, while Vimentin and Snail1 expression were decreased(all P<0.05).CONCLUSION:The miR-1246 promotes high glucose-induced apoptosis, invasion and metastasis, oxidative stress, inflammatory response, and EndMT process in RMECs cells by regulating METTL3 mediated SIRT1 m6A modification.
2.Mechanism study of SIRT3 alleviating oxidative-stress injury in renal tubular cells by promoting mitochondrial biogenesis via regulating mitochondrial redox balance
Yaojun LIU ; Jun ZHOU ; Jing LIU ; Yunfei SHAN ; Huhai ZHANG ; Pan XIE ; Liying ZOU ; Lingyu RAN ; Huanping LONG ; Lunli XIANG ; Hong HUANG ; Hongwen ZHAO
Organ Transplantation 2026;17(1):86-94
Objective To elucidate the molecular mechanism of sirtuin-3 (SIRT3) in regulating mitochondrial biogenesis in human renal tubular epithelial cells. Methods Cells were stimulated with different concentrations of H2O2 and divided into four groups: control (NC), 50 μmol/L H2O2, 110 μmol/L H2O2 and 150 μmol/L H2O2. SIRT3 protein expression was then measured. SIRT3 was knocked down with siRNA, and cells were further assigned to five groups: control (NC), negative-control siRNA (NCsi), SIRT3-siRNA (siSIRT3), NCsi+H2O2, and siSIRT3+H2O2. After 24 h, cellular adenosine triphosphate (ATP) and mitochondrial superoxide anion (O2•−) levels were determined, together with mitochondrial expression of SIRT3, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), superoxide dismutase 2 (SOD2), acetylated-SOD2 and adenosine monophosphate activated protein kinase α1 (AMPKα1). Results The 110 and 150 μmol/L H2O2 decreased SIRT3 protein (both P<0.05). ATP and mitochondrial O2•− did not differ between NC and NCsi groups (both P>0.05). Compared to the NCsi group, the siSIRT3 group exhibited elevated O2•− level, decreased SIRT3 protein and increased expression levels of SOD2 and acetylated SOD2 protein (all P<0.05). Compared to the NCsi group, the NCsi+H2O2 group exhibited decreased cellular ATP levels, elevated mitochondrial O2•− levels, and reduced protein expression levels of SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 (all P<0.05). Compared with the siSIRT3 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 protein expression levels and a decrease in acetylated SOD2 protein expression levels (all P<0.05). Compared with the NCsi+H2O2 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, AMPKα1, PGC-1α and NRF1, TFAM protein expression levels, and an increase in SOD2 and acetylated SOD2 protein expression levels (all P<0.05). Conclusions SIRT3 promotes mitochondrial biogenesis in tubular epithelial cells via the AMPK/PGC-1α/NRF1/TFAM axis, representing a key mechanism through which SIRT3 ameliorates oxidative stress-induced mitochondrial dysfunction.
3.Research progress on antibody-drug conjugates in the treatment of triple-negative breast cancer
Danna LIU ; Shuangshuang SONG ; Lu CHEN ; Yongqiang SUN ; Bo SUN ; Hanli ZHOU ; Xiaoli ZHAO ; Tiandong KONG
China Pharmacy 2026;37(1):124-129
Antibody-drug conjugates (ADCs) are a novel class of anti-tumor agents composed of a targeted monoclonal antibody, a cytotoxic drug, and a linker connecting the two. They combine the high specificity of antibodies with the potent cytotoxicity of chemotherapeutic agents. Triple-negative breast cancer (TNBC) is characterized by high aggressiveness, elevated risks of recurrence and metastasis, and poor prognosis, largely due to the lack of effective therapeutic targets. This review summarizes the research progress of ADCs in the treatment of TNBC. It has been found that ADCs targeting human epidermal growth factor receptor 2 (such as trastuzumab deruxtecan), trophoblast cell surface antigen 2 (such as sacituzumab govitecan and datopotamab deruxtecan), zinc transporter LIV-1 (such as ladiratuzumab vedotin), HER-3 (such as patritumab deruxtecan), epidermal growth factor receptor (such as AVID100), and glycoprotein non-metastatic melanoma protein B (such as glembatumumab vedotin) have all demonstrated promising therapeutic effects against TNBC. Despite challenges including acquired resistance and treatment-related toxicities, ADCs are undoubtedly reshaping the therapeutic landscape for TNBC and are expected to occupy a more central position in TNBC treatment in the future.
4.Traditional Chinese Medicine Regulates Related Signaling Pathways to Prevent and Control Breast Cancer and Precancerous Lesions: A Review
Yifei ZENG ; Di ZHAO ; Junyue WANG ; Mengjie WANG ; Yubo GUO ; Yu ZHOU ; Dongxiao ZHANG ; Wenjie ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):290-301
Breast cancer has become the malignant tumor with the highest incidence rate among women, seriously threatening the life and health of women all over the world. The pathogenic factors and development mechanisms of breast cancer are complex and diverse. The development of breast cells from ordinary hyperplasia to atypical hyperplasia, and from pre-cancerous lesions to cancerous lesions, is a long-term progressive process. Therefore, early screening and prevention of breast cancer is particularly important. Western medicine has a relatively mature treatment program for breast cancer, which is mainly based on surgery and systemic treatment, whereas the ensuing complications and adverse reactions often bring a heavy burden to patients. For the precancerous lesions of breast cancer, surgery is also the mainstay of treatment. In recent years, traditional Chinese medicine (TCM) has increasingly highlighted its advantages in the prevention and treatment of breast cancer. Increasing studies have shown that in the prevention and treatment of breast cancer and pre-cancerous lesions, TCM compound prescriptions, single herbs or herb pairs, and active components are able to regulate a variety of intracellular signaling pathways through multi-targets to inhibit the proliferation and invasion, promote the apoptosis and autophagy of tumor cells, and regulate the cell cycle and the immune microenvironment, thus exerting anti-tumor effects. At the same time, they can significantly attenuate the toxic side effects of radiotherapy and drug resistance of patients. However, the specific mechanisms of TCM in the prevention and treatment of breast cancer and precancerous lesions have not been fully clarified. The available studies are tanglesome regarding the TCM inhibition of tumor development through the regulation of classical signaling pathways such as phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), Wnt/β-catenin, and Notch, which still need to be verified by a large number of clinical and experimental studies. Therefore, this paper reviews the research progress in the prevention and treatment of breast cancer and precancerous lesions by TCM through interfering with the relevant signaling pathways in recent years, aiming to summarize the possible mechanisms of TCM in the prevention and treatment of breast cancer and provide references for subsequent studies.
5.Effects of subanesthetic dose of esketamine on postoperative anxiety and recovery in patients undergoing laparo-scopic cholecystectomy
Zhangzhen ZHONG ; Xian ZHENG ; Ting XU ; Jie WANG ; Hui CAO ; Xinggen ZHOU ; Hui LI ; Jiacheng ZHAO ; Hui LIU ; Chao ZHANG
China Pharmacy 2026;37(2):204-209
OBJECTIVE To investigate the effects of subanesthetic dose of esketamine on postoperative anxiety and recovery in patients undergoing laparoscopic cholecystectomy. METHODS A total of 200 patients scheduled for laparoscopic cholecystectomy at Suzhou Ninth Hospital Affiliated to Soochow University from January 2023 to December 2024 were randomly assigned to control group (n=100) and observation group (n=100). One minute before the initiation of anesthesia, patients in the control group received intravenous injections of Propofol emulsion injection, Sufentanil citrate injection, and Succinylcholine chloride injection. On this basis, patients in the observation group received an intravenous injection of Esketamine hydrochloride injection. The anxiety status of patients in both groups was compared, along with their general intraoperative conditions (including sufentanil dosage, duration of pneumoperitoneum, operative time, anesthesia time, and extubation time), postoperative recovery, incidence of adverse reactions, and the need for dezocine rescue analgesia. Heart rate and mean arterial pressure, entropy index (state entropy and response entropy), inflammatory marker levels [interleukin-6 (IL-6) and C-reactive protein (CRP)], numerical rating scale (NRS) for pain intensity were compared between the two groups at different time points. RESULTS No significant differences were found between the two groups in pneumoperitoneum duration, operative time, anesthesia time,extubation time, incidence of postoperative dry mouth, entropy index or length of stay in the post-anesthesia care unit (P>0.05). Compared with the control group, the observation group showed significantly lower postoperative STAI-S scores, reduced intraoperative sufentanil consumption, decreased incidence of postoperative nausea, vomiting, and shivering, the need for dezocine rescue analgesia, as well as lower plasma IL-6 and CRP levels at 24 h after surgery, and NRS (P<0.05). The heart rate and mean arterial pressure of patients in the observation group at the start of surgery, end of surgery, and during extubation were all significantly higher than those in the control group (P<0.05). CONCLUSIONS Subanesthetic dose of esketamine can effectively alleviate postoperative anxiety, reduce intraoperative opioid consumption, suppress postoperative inflammatory response, relieve postoperative pain, and promote recovery in patients undergoing laparoscopic cholecystectomy.
6.Comparison of SEC-RI-MALLS and SEC-RID methods for determining molecular weight and molecular weight distribution of PLGA
WANG Baocheng ; ZHANG Xiaoyan ; ZHOU Xiaohua ; ZHAO Xun ; MA Congyu ; GAO Zhengsong ; SHI Haiwei ; YUAN Yaozuo ; HANG Taijun
Drug Standards of China 2025;26(1):110-116
Objective: To establish a method for determining the molecular weight and molecular weight distribution of Poly(Lactide-co-Glycolide Acid) (PLGA) using Size Exclusion Chromatography-Refractive Index-Multiangle Laser Light Scattering (SEC-RI-MALLS) and Size Exclusion Chromatography-Refractive Index (SEC-RID), and to compare the results obtained from these two methods.
Methods: For SEC-RI-MALLS, tetrahydrofuran was used as the mobile phase, Shodex GPC KF-803L was employed as the chromatographic column with a flow rate of 1 mL·min-1, column temperature at 30 ℃, and an injection volume of 100 μL. For SEC-RID, tetrahydrofuran was also used as the mobile phase, Agilent PLgel 5 μm MIXD-D was used as the chromatographic column with a flow rate of 1 mL·min-1, column temperature at 30 ℃, differential detector temperature at 35 ℃, and an injection volume of 20 μL. The molecular weight and molecular weight distribution were calculated using Agilent’s GPC software. The newly established methods were validated methodologically, and the molecular weight and molecular weight distribution of 13 batches of samples were determined.
Results: The precision, accuracy, stability, and repeatability tests for SEC-RI-MALLS showed RSD values of 1.35%, 1.58%, 1.53%, and 1.26%, respectively. The SEC-RID method exhibited good linearity (r=0.999 9), with RSD values for precision, accuracy, stability, and repeatability tests (n=6) of 2.05%, 1.62%, 1.30%, and 2.97%, respectively. The results obtained from SEC-RI-MALLS were lower than those from SEC-RID, and the molecular weight distribution coefficient was smaller, but the results from the paired T-test performed with the value measured by SEC-RID method and the value measured by SEC-RI-MALLS method multiplied a conversion coefficient of 1.5 showed no significant difference between the two methods.
Conclusion: Both methods are stable and reliable, and can be used for the determination of PLGA molecular weight and molecular weight distribution based on the specific situations.
7.Three-dimensional finite element analysis of anterior femoral notching during total knee arthroplasty at different bone strengths
Jinhai ZHOU ; Jiangwei LI ; Xuquan WANG ; Ying ZHUANG ; Ying ZHAO ; Yuyong YANG ; Jiajia WANG ; Yang YANG ; Shilian ZHOU
Chinese Journal of Tissue Engineering Research 2025;29(9):1775-1782
BACKGROUND:Periprosthetic fracture of the femoral of the knee after total knee arthroplasty is one of the common complications,and there is a lack of biomechanical research on the periprosthetic fractures of the femoral of the knee under different bone strength conditions.The three-dimensional finite element analysis can provide a biomechanical basis for clinical practice. OBJECTIVE:To investigate the biomechanical changes of anterior femoral notching after total knee arthroplasty under different bone strengths,and to provide a mechanical basis for the clinical prevention of supracondylar femoral periprosthetic fractures after knee arthroplasty. METHODS:The femoral CT data of healthy adults were obtained,and the three-dimensional model of femoral lateral replacement of the knee joint was established by Mimics,Geomagic studio,and Solidworks software.Anterior femoral notching models of different depths were constructed,and the models were imported into ANSYS software to analyze the changes of biological stress on the femoral condyle with different bone strengths and different anterior femoral notching depths.The stress changes of the femoral anterior condyle section after and before the filling of anterior femoral notching with bone cement were analyzed. RESULTS AND CONCLUSION:(1)Under any bone strength,the supracondylar stress increased with the depth of anterior femoral notching.In normal bone conditions,there was a stress abrupt change point when the anterior femoral notching depth was between 3 mm and 4 mm.In the case of osteoporosis,there was a stress abrupt point when the anterior femoral notching depth was between 2 mm and 3 mm.(2)When anterior femoral notching occurred during knee arthroplasty and the depth exceeded the thickness of the bone cortex,the supracondylar stress of the femoral gradually increased as the bone strength decreased.(3)The stress of the anterior femoral condyle section decreased when the model with an anterior femoral notching depth of 3 mm was filled with bone cement.(4)The results show that anterior femoral notching should be avoided during knee arthroplasty,especially in patients with osteoporosis.If anterior femoral notching occurs during surgery,bone cement can be used to evenly fill the anterior femoral notching to reduce the supracondylar stress of the femur and reduce the incidence of periprosthetic fractures of the femoral joint
8.Optimization Strategy and Practice of Traditional Chinese Medicine Compound and Its Component Compatibility
Zhihao WANG ; Wenjing ZHOU ; Chenghao FEI ; Yunlu LIU ; Yijing ZHANG ; Yue ZHAO ; Lan WANG ; Liang FENG ; Zhiyong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):299-310
Prescription optimization is a crucial aspect in the study of traditional Chinese medicine (TCM) compounds. In recent years, the introduction of mathematical methods, data mining techniques, and artificial neural networks has provided new tools for elucidating the compatibility rules of TCM compounds. The study of TCM compounds involves numerous variables, including the proportions of different herbs, the specific extraction parts of each ingredient, and the interactions among multiple components. These factors together create a complex nonlinear dose-effect relationship. In this context, it is essential to identify methods that suit the characteristics of TCM compounds and can leverage their advantages for effective application in new drug development. This paper provided a comprehensive review of the cutting-edge optimization experimental design methods applied in recent studies of TCM compound compatibilities. The key technical issues, such as the optimization of source material selection, dosage optimization of compatible herbs, and multi-objective optimization indicators, were discussed. Furthermore, the evaluation methods for component effects were summarized during the optimization process, so as to provide scientific and practical foundations for innovative research in TCM and the development of new drugs based on TCM compounds.
9.Yishen Huashi Granules Protect Kidneys of db/db Mice via p38 MAPK Signaling Pathway
Kaidong ZHOU ; Sitong WANG ; Ge JIN ; Yanmo CAI ; Xin ZHOU ; Yunhua LIU ; Xinxue ZHANG ; Min ZHANG ; Zongjiang ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):58-68
ObjectiveTo explore the mechanism of Yishen Huashi granules in alleviating renal tubular epithelial cell injury and relieving diabetic kidney disease by regulating the mitogen-activated protein kinase (MAPK) signaling pathway. MethodsThe db/db mice of 12 weeks old were randomly assigned into model , dapagliflozin (1.6 mg·kg-1), and Yishen Huashi granules (4.7 g·kg-1), and db/m mice were used as the control group. The general conditions of mice were observed, and fasting blood glucose and 24-h urinary protein and albumin-to-creatinine ratio (ACR) were measured at weeks 0 and 12 of administration. After 12 weeks of treatment, the levels of serum creatinine (SCr), blood urea (UREA), triglycerides (TG), total cholesterol (TC), and low density lipoprotein (LDL) were measured. The pathological changes in the renal tissue were observed by hematoxylin-eosin (HE) staining, Periodic acid-Schiff (PAS) staining, Mallory staining, and transmission electron microscopy. Real-time PCR was employed to determine the mRNA levels of monocyte chemotactic protein-1 (MCP-1) and CC chemokine receptor-2 (CCR2) in the renal tissue of mice. The immunohistochemical assay was employed to examine the expression of p38, phospho-p38 (p-p38), MCP-1, and CCR2 in the renal tissue of mice. Western blotting was employed to measure the protein levels of p-p38, p38, MCP-1, and CCR2 in the renal tissue of mice.HK-2 cells cultured in vitro were grouped as follows: negative control, high glucose(30 mmol·L-1), Yishen Huashi granule-containing serum, and SB203580. After 48 h of cell culture in each group, RNA were extracted and the levels of MCP-1, and CCR2 mRNA were determined by Real-time PCR,proteins were extracted and the levels of p38, p-p38, MCP-1, and CCR2 were determined by Western blot. ResultsThe in vivo experiments showed that before treatment, other groups had higher body weight, blood glucose level, 24 h urinary protein, and ACR than the control group (P<0.05,P<0.01). After 12 weeks of treatment, compared with the model group, the Yishen Huashi granules group showed improved general conditions, a decreasing trend in body weight, lowered levels of blood glucose, 24-h urinary protein, and ACR (P<0.01), reduced SCr and UREA (P<0.01), and declined levels of TC, TG, and LDL (P<0.05,P<0.01). Compared with the model group, the Yishen Huashi granules group showed alleviated damage and interstitial fibrosis in the renal tissue as well as reductions in glomerular foot process fusion and basement membrane thickening. Moreover, the Yishen Huashi granules group showed down-regulated mRNA levels of MCP-1 and CCR2 (P<0.01), reduced positive expression of p-p38, MCP-1, and CCR2 (P<0.01), and down-regulated protein levels of p-p38/p38, MCP-1, and CCR2 (P<0.05) in the renal tissue. The cell experiment showed that compared with the high glucose group, the Yishen Huashi granule-containing serum group showcased down-regulated mRNA levels of MCP-1 and CCR2 (P<0.01) and down-regulated protein levels of p-p38/p38, MCP-1, and CCR2(P<0.05,P<0.01). ConclusionYishen Huashi granules can regulate glucose-lipid metabolism, reduce 24 h urinary protein and ACR, improve the renal function, alleviate the renal tubule injury caused by high glucose, and protect renal tubule epithelial cells in db/db mice by reducing MCP-1/CCR2 activation via the p38 MAPK signaling pathway.
10.Modified Xiehuangsan Regulates Microglial Polarization and TLR4/MyD88/NF-κB Pathway to Treat Tic Disorders in Rats
Mengjie ZHAO ; Qiong ZHAO ; Cuiling YANG ; Hongyun ZHOU ; Xiangjuan SUN ; Xinyi GUO ; Sajiyue HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):10-18
ObjectiveTo explore the mechanism of modified Xiehuangsan in treating tic disorders (TD) based on microglial polarization and the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor (NF)-κB pathway. MethodsSeventy-two Sprague-Dawley (SD) rats were randomly assigned into six groups: control, model, tiapride (0.025 g·kg-1), and low-, medium-, and high-dose (12, 24, 48 g·kg-1, respectively) modified Xiehuangsan, with 12 rats in each group. Except the control group, the other groups received intraperitoneal injection of 3,3'-iminodipropionitrile (IDPN) for 7 consecutive days for the modeling of TD. After successful modeling, the control and model groups were given normal saline via gavage, and the other groups were administrated with corresponding drugs by gavage. After 28 days of continuous intervention, rat behaviors were observed, and the modified Xiehuangsan group showing the best anti-TD effect was selected for deciphering the treatment mechanism. Hematoxylin and eosin staining was conducted to observe morphological changes in the rat striatum. Immunohistochemistry was employed to detect the expression of CD16 and CD206 in the striatum. Real-time PCR was employed to measure the mRNA levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-4, TLR4, MyD88, and NF-κB p65 in the striatum. Western blot was employed to determine the protein levels of ionized calcium-binding adapter molecule 1 (Iba1), Fc receptor family for immunoglobulin (Ig)G type Ⅲ (CD16), mannose receptor (CD206), TLR4, MyD88, and NF-κB p65 in the striatum. ResultsCompared with the control group, the model group showed increased stereotyped behaviors, locomotor activity, total movement distance, and movement speed, shortened resting time (P<0.01), and noticeable pathological changes in the striatum. Compared with the model group, the tiapride group and modified Xiehuangsan groups exhibited reduced stereotyped behavior, locomotor activity, total movement distance, and movement speed, prolonged resting time (P<0.05, P<0.01), and alleviated pathological changes in the striatum. Among the modified Xiehuangsan groups, the high-dose group had the best intervention effect and the mildest pathological changes. Therefore, the high-dose group was selected for further research. Compared with the control group, the modeling of TD increased Iba1 and CD16 expression (P<0.05, P<0.01), up-regulated the mRNA levels of IL-1β and TNF-α (P<0.05, P<0.01), down-regulated the mRNA level of IL-4 (P<0.05), up-regulated the mRNA and protein levels of TLR4 and MyD88 (P<0.05, P<0.01), and up-regulated the protein level of NF-κB p65 (P<0.01). Compared with the model group, modified Xiehuangsan reduced Iba1 and CD16 expression (P<0.05, P<0.01), up-regulated the protein level of CD206 (P<0.05, P<0.01), down-regulated the mRNA levels of IL-1β and TNF-α (P<0.05), up-regulated the mRNA level of IL-4 (P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, and NF-κB p65 (P<0.05, P<0.01). ConclusionModified Xiehuangsan demonstrated a definite therapeutic effect on TD in rats. It may reduce neuroinflammation in TD rats by regulating the polarization of microglia in the striatum via the TLR4/MyD88/NF-κB signaling pathway.

Result Analysis
Print
Save
E-mail