1.Electrical response grading versus House-Brackmann scale for evaluation of facial nerve injury after Bell's palsy: a comparative study.
Bin HUANG ; Zhangling ZHOU ; Lili WANG ; Cong ZUO ; Yan LU ; Yong CHEN
Journal of Integrative Medicine 2014;12(4):367-71
There are no convenient techniques to evaluate the degree of facial nerve injury during a course of acupuncture treatment for Bell's palsy. Our previous studies found that observing the electrical response of specific facial muscles provided reasonable correlation with the prognosis of electroacupuncture treatment. Hence, we used the new method to evaluate the degree of facial nerve injury in patients with Bell's palsy in comparison with the House-Brackmann scale. The relationship between therapeutic effects and prognosis was analyzed to explore an objective method for evaluating Bell's palsy.
2.Construction of RNAi vector of dopamine D1 receptor and identification of its silencing effects.
Hui LI ; Junmei XU ; Guixiu YUAN ; Jin LI ; Zhangling CHEN
Journal of Central South University(Medical Sciences) 2013;38(6):570-575
OBJECTIVE:
To construct dopamine D1 receptor (DRD1) expression interference vectors to study the role of DRD1 in nerve cells and lay a foundation for drug development in anti-convulsion.
METHODS:
Based on DRD1 gene sequence in GenBank, 10 interfere vectors of DRD1 were designed. Liposomal was used to transfect NG-108-15 and the transfect effect was assayed by GFP. With realtime PCR and Western blot, the DRD1 expression was detected.
RESULTS:
The 10 constructed interfere vectors transfected into NG-108-15 cells by liposomal method and inhibited DRD1 mRNA and protein expression. DRD1 mRNA expression in NG-108-15 cells transfected with pGPU6-GFP-Neo-si-DRD1-5 was the lowest whereas DRD1 protein expression in NG-108-15 cells transfected with pGPU6-GFP-Neo-si-DRD1-1, -2, -6, -7 was the lowest.
CONCLUSION
DRD1 expression interference vector is successfully constructed.
Animals
;
Cell Line, Tumor
;
Genetic Vectors
;
Glioma
;
pathology
;
Hybrid Cells
;
Liposomes
;
metabolism
;
Mice
;
Neuroblastoma
;
pathology
;
RNA Interference
;
RNA, Messenger
;
genetics
;
metabolism
;
RNA, Small Interfering
;
genetics
;
Receptors, Dopamine D1
;
genetics
;
metabolism
;
Transfection