1.Engineering a High-Affinity PD-1 Peptide for Optimized Immune Cell-Mediated Tumor Therapy
Yilei CHEN ; Hongxing HUANG ; Yin LIU ; Zhanghao WANG ; Lili WANG ; Quanxiao WANG ; Yan ZHANG ; Hua WANG
Cancer Research and Treatment 2022;54(2):362-374
Purpose:
The purpose of this study was to optimize a peptide (nABP284) that binds to programmed cell death protein 1 (PD-1) by a computer-based protocol in order to increase its affinity. Then, this study aimed to determine the inhibitory effects of this peptide on cancer immune escape by coculturing improving cytokine-induced killer (ICIK) cells with cancer cells.
Materials and Methods:
nABP284 that binds to PD-1 was identified by phage display technology in our previous study. AutoDock and PyMOL were used to optimize the sequence of nABP284 to design a new peptide (nABPD1). Immunofluorescence was used to demonstrate that the peptides bound to PD-1. Surface plasmon resonance was used to measure the binding affinity of the peptides. The blocking effect of the peptides on PD-1 was evaluated by a neutralization experiment with human recombinant programmed death-ligand 1 (PD-L1) protein. The inhibition of activated lymphocytes by cancer cells was simulated by coculturing of human acute T lymphocytic leukemia cells (Jurkat T cells) with human tongue squamous cell carcinoma cells (Cal27 cells). The anticancer activities were determined by coculturing ICIK cells with Cal27 cells in vitro.
Results:
A high-affinity peptide (nABPD1, KD=11.9 nM) for PD-1 was obtained by optimizing the nABP284 peptide (KD=11.8 μM). nABPD1 showed better efficacy than nABP284 in terms of increasing the secretion of interkeulin-2 by Jurkat T cells and enhancing the in vitro antitumor activity of ICIK cells.
Conclusion
nABPD1 possesses higher affinity for PD-1 than nABP284, which significantly enhances its ability to block the PD-1/PD-L1 interaction and to increase ICIK cell-mediated antitumor activity by armoring ICIK cells.
2.Inhibition of ASCT2 induces hepatic stellate cell senescence with modified proinflammatory secretome through an IL-1α/NF-κB feedback pathway to inhibit liver fibrosis.
Feixia WANG ; Zhanghao LI ; Li CHEN ; Ting YANG ; Baoyu LIANG ; Zili ZHANG ; Jiangjuan SHAO ; Xuefen XU ; Guoping YIN ; Shijun WANG ; Hai DING ; Feng ZHANG ; Shizhong ZHENG
Acta Pharmaceutica Sinica B 2022;12(9):3618-3638
Senescence of activated hepatic stellate cells (aHSCs) is a stable growth arrest that is implicated in liver fibrosis regression. Senescent cells often accompanied by a multi-faceted senescence-associated secretory phenotype (SASP). But little is known about how alanine-serine-cysteine transporter type-2 (ASCT2), a high affinity glutamine transporter, affects HSC senescence and SASP during liver fibrosis. Here, we identified ASCT2 is mainly elevated in aHSCs and positively correlated with liver fibrosis in human and mouse fibrotic livers. We first discovered ASCT2 inhibition induced HSCs to senescence in vitro and in vivo. The proinflammatory SASP were restricted by ASCT2 inhibition at senescence initiation to prevent paracrine migration. Mechanically, ASCT2 was a direct target of glutaminolysis-dependent proinflammatory SASP, interfering IL-1α/NF-κB feedback loop via interacting with precursor IL-1α at Lys82. From a translational perspective, atractylenolide III is identified as ASCT2 inhibitor through directly bound to Asn230 of ASCT2. The presence of -OH group in atractylenolide III is suggested to be favorable for the inhibition of ASCT2. Importantly, atractylenolide III could be utilized to treat liver fibrosis mice. Taken together, ASCT2 controlled HSC senescence while modifying the proinflammatory SASP. Targeting ASCT2 by atractylenolide III could be a therapeutic candidate for liver fibrosis.