1.Role of autophagy in treatment of paracetamol-induced liver injury
Guojing XING ; Lifei WANG ; Longlong LUO ; Xiaofeng ZHENG ; Chun GAO ; Xiaohui YU ; Jiucong ZHANG
Journal of Clinical Hepatology 2025;41(2):389-394
N-acetyl-p-aminophenol (APAP) is an antipyretic analgesic commonly used in clinical practice, and APAP overdose can cause severe liver injury and even death. In recent years, the incidence rate of APAP-induced liver injury (AILI) tends to increase, and it has become the second most common cause of liver transplantation worldwide. Autophagy is a highly conserved catabolic process that removes unwanted cytosolic proteins and organelles through lysosomal degradation to achieve the metabolic needs of cells themselves and the renewal of organelles. A large number of studies have shown that autophagy plays a key role in the pathophysiology of AILI, involving the mechanisms such as APAP protein conjugates, oxidative stress, JNK activation, mitochondrial dysfunction, inflammatory response and apoptosis. This article elaborates on the biological mechanism of autophagy in AILI, in order to provide a theoretical basis for the treatment of AILI and the development of autophagy regulators.
2.Effect of miR-130a-3p targeting PPAR-γ on epithelial-mesenchymal transition in silica-induced pulmonary fibrosis
Xiaohui HAO ; Qian LI ; Yixuan JIN ; Qinxin ZHANG ; Yudi WANG ; Fang YANG
Journal of Environmental and Occupational Medicine 2025;42(2):188-195
Background At present, the treatment of silicosis is still limited, and no method is available to cure the disease. miRNAs are involved in the process of fibrosis at the transcriptional level by directly degrading target gene mRNA or inhibiting its translation. However, how miR-130a-3p regulates silicosis fibrosis has not been fully elucidated yet. Objective To investigate whether miR-130a-3p promotes epithelial-mesenchymal transition (EMT) by inhibiting peroxisome proliferators-activated receptors gamma (PPAR-γ), thereby pro-moting the process of silicotic fibrosis. To identify effective new targets for the treatment of silicotic fibrosis. Methods (1) Animal experiments: C57BL/6J mice were intratracheally injected with a one-time dose of 10 mg silica suspension (dissolved in 100 μL saline) as positive lung exposure. A silicosis model group was established 28 d after the exposure. A control group was injected with the same amount of normal saline into the trachea. Hematoxylin-eosin staining and Sirius red staining were used to observe the pathological changes and collagen deposition in lung tissues respectively. Realtime fluorescence-based quantitative polymerase chain reaction (RT-qPCR) was used to assay the expression of miR-130a-3p and PPAR-γ mRNA in lung tissues. Western blotting was used to detect the protein expression of PPAR-γ, transforming growth factor (TGF)-β1, E-cadherin, α-smooth muscle actin (α-SMA), and Collagen Ⅰ in lung tissues. (2) Cells experiments: Mouse lung epithelial cells (MLE-12) were induced with 5 µg·L−1 TGF-β1 for different time (0, 12, 24, 48 h). RT-qPCR was used to detect the expression of miR-130a-3p and PPAR-γ mRNA in cells. The binding relationship between miR-130a-3p and PPAR-γ mRNA was verified by dual luciferase reporter gene assay. MLE-12 cells were stimulated by 5 µg·L−1 TGF-β1 after transfection of miR-130a-3p inhibitor, and Western blotting was used to measure the protein expression of PPAR-γ, E-cadherin, and α-SMA in the TGF-β1-induced cells. Results In the silicosis model group, the alveolar septum was widened and the pulmonary nodules were formed. The Sirius red staining collagen deposition in pulmonary nodules indicated that a silicosis fibrosis model was successfully established. The expressions of TGF-β1, α-SMA, and Collagen Ⅰ proteins were increased, and the expressions of E-cadherin and PPAR-γ proteins were decreased in lung tissues of the silicosis group, compared with the control group (P<0.05 or P<0.01). The expression of miR-130a-3p was increased and the expression of PPAR-γ mRNA was decreased in lung tissues of the silicosis model (P<0.01). The expression of miR-130a-3p was significantly increased, while the expression of PPAR-γ mRNA was decreased in the TGF-β1 induced MLE-12 cells (P<0.05 or P<0.01). The dual luciferase reporter assay showed a direct relationship between miR-130a-3p and PPAR-γ mRNA in MLE-12 cells. The transfection of miR-130a-3p inhibitor in the TGF-β1 induced MLE-12 cells inhibited the decrease of PPAR-γ and E-cadherin proteins, and the increase of α-SMA protein in the MLE-12 cells induced by TGF-β1 (P<0.05 or P<0.01). Conclusion miR-130a-3p promotes the development of silicosis fibrosis by targeting PPAR-γ to increase pulmonary EMT.
3.Interventional Effect and Mechanisms of Renqing Mangjue on MNNG-induced Malignant Transformation of Gastric Mucosal Epithelial Cells
Peiping CHEN ; Fengyu HUANG ; Xinzhuo ZHANG ; Xiangying KONG ; Ziqing XIAO ; Yanxi LI ; Xiaohui SU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):69-77
ObjectiveThis study aimed to investigate the intervention effect of Renqing Mangjue on the malignant transformation of gastric mucosal epithelial cells induced by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and to explore its molecular mechanism in preventing precancerous lesions of gastric cancer based on the cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway. MethodsHuman gastric mucosal epithelial cells (GES-1) were initially induced by MNNG to establish a precancerous cell model (MC cells). The effective concentration of MNNG for inducing malignant transformation in GES-1 cells was screened using the cell proliferation activity decection (CCK-8) assay, and the effective concentration of Renqing Mangjue for inhibiting the proliferation of transformed GES-1 cells was also determined. GES-1 cells were divided into a blank control group, a model group, and treatment groups with Renqing Mangjue at concentrations of 1, 3, 10, and 30 mg·L-1. Furthermore, the effects of Renqing Mangjue on the migratory ability and epithelial-mesenchymal transition (EMT) characteristics of GES-1 malignant transformed cells were evaluated using Transwell migration assays, wound healing assays, and real-time quantitative reverse transcription polymerase chain reaction (Real-time PCR). Additionally, candidate chemical components and target sites of Renqing Mangjue were obtained from the TCMIP v2.0 database, and disease targets at various stages of gastric cancer precursors were sourced from the Gene Expression Omnibus (GEO) database. Pathway enrichment analysis was performed using the Metascape database to predict the potential mechanisms of action of Renqing Mangjue. Finally, the protective mechanism of Renqing Mangjue against gastric cancer precursors was validated through Western blot analysis. ResultsAt a concentration of 20 μmol·L-1, MNNG exhibited an inhibition rate of approximately 50% on GES-1 cells (P<0.01), and at this concentration, the GES-1 cells displayed biological characteristics indicative of malignant transformation. In contrast, Renqing Mangjue had no significant effect on the proliferation of normal GES-1 cells, but significantly inhibited the proliferation of MC cells (P<0.01) and markedly reduced their migratory capacity (P<0.01). Moreover, it also increased the mRNA expression level of E-cadherin during the EMT process (P<0.05), while inhibiting the expression of both N-cadherin and the transcription factor Snail mRNA (P<0.05, P<0.01). Network predictions suggested that Renqing Mangjue may prevent gastric cancer precursors through modulating the cGMP/PKG and MAPK/ERK signaling pathways. Furthermore, Western blot results indicated that Renqing Mangjue upregulated the expression of PKG and NPRB (B-type natriuretic peptide receptor) proteins in the cGMP/PKG pathway (P<0.01), while downregulating the expression of the downstream proteins MEK and ERK (P<0.05, P<0.01). ConclusionIn summary, Renqing Mangjue can prevent gastric cancer precursors by inhibiting the proliferation and migration of malignant transformed GES-1 cells, thereby delaying the EMT process. The underlying mechanisms may be related to the activation of the cGMP/PKG pathway and the inhibition of the MEK/ERK signaling pathway.
4.Mechanism of Qingrun Prescription-containing Serum Improving Insulin Resistance in HepG2 Cells via Branched-chain α-keto Acid Dehydrogenase Regulation of Branched-chain Amino Acids (BCAAs)/mTOR Pathway
Xiangwei BU ; Xiaohui HAO ; Runyun ZHANG ; Meizhen ZHANG ; Ze WANG ; Haoshuo WANG ; Jie WANG ; Qing NI ; Lan LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):90-98
ObjectiveTo investigate the effect of Qingrun prescription(QRP)-containing serum on improving insulin resistance in HepG2 cells and its potential mechanisms. MethodsAn insulin resistance model was established in HepG2 cells with 1×10-6 mol·L-1 insulin. Branched-chain α-keto acid dehydrogenase (BCKDH) gene silencing was achieved using siRNA, and the cells were divided into 8 groups: normal group, model group (1×10-6 mol·L-1 insulin), metformin group (1 mmol·L-1 metformin), high-, medium-, and low-dose QRP groups (20%, 10%, and 5% QRP-containing serum, respectively), QRP + siRNA-silenced BCKDH (si-BCKDH) group (10% QRP-containing serum + si-BCKDH), and QRP + si-NC group (10% QRP-containing serum + si-NC). Glucose levels in the supernatant were measured with a glucose assay kit, while glycogen content was assessed using a glycogen assay kit. Levels of branched-chain amino acids (BCAAs) and branched-chain keto acids (BCKAs) were determined using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). mRNA transcription and protein expression levels of BCKDH, dishevelled, Egl-10, and pleckstrin (DEP) domain-containing mammalian target of rapamycin (mTOR)-interacting protein (DEPTOR), mTOR, and ribosomal protein S6 kinase 1 (S6K1) were detected using real-time quantitative polymerase chain reaction (Real-time PCR) and Western blot. ResultsCompared to the normal group, the model group exhibited significantly decreased glucose consumption and glycogen content, increased levels of BCAAs and BCKAs, downregulated expression of BCKDH and DEPTOR, and upregulated mTOR and S6K1 expression (P<0.01). In comparison to the model group, QRP treatment at all doses significantly enhanced glucose consumption and glycogen content while reducing BCAAs and BCKAs levels (P<0.01). The high- and medium-dose QRP groups demonstrated significant upregulation of BCKDH mRNA transcription and protein expression, as well as DEPTOR mRNA transcription. Moreover, the DEPTOR protein expression level was significantly increased in high-, medium-, and low-dose QRP groups, while mTOR and S6K1 mRNA and protein expression levels were markedly downregulated (P<0.05, P<0.01). Compared to the QRP + si-NC group, the QRP + si-BCKDH group exhibited increased BCAAs and BCKAs levels, significantly decreased BCKDH mRNA transcription and protein expression, downregulated DEPTOR mRNA and protein expression, and upregulated mTOR and S6K1 mRNA and protein expression (P<0.05, P<0.01). ConclusionQRP may improve insulin resistance by reprogramming BCAAs metabolism. This effect involves upregulating BCKDH, reducing BCAAs and BCKAs levels, and suppressing the mTOR pathway activation.
5.Mechanism of IGF2BP2 regulation of PPAR-γ/GLUT4 pathway in insulin resistance induced by sodium arsenite exposure in HepG2 cells
Shiqing XU ; Zhida HU ; Qiyao ZHANG ; Siqi ZHAO ; Yujie WANG ; Xiaohui WANG ; Teng MA ; Li WANG
Journal of Environmental and Occupational Medicine 2025;42(4):400-407
Background Arsenic is an environmentally harmful substance that causes hepatic insulin resistance and liver damage, increasing the risk of type 2 diabetes mellitus. Objective To explore whether the insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) is involved in insulin resistance in HepG2 cells after arsenic exposure through the peroxisome-proliferator-activated receptor γ (PPAR-γ) / glucose transporter 4 (GLUT4) pathway. Methods Cell viability was determined using cell counting kit 8 (CCK8) and an appropriate NaAsO2 infection dose was determined. A cellular arsenic exposure model of HepG2 cells was established by four concentrations of NaAsO2 solution for 24 h (the experiment was divided into four groups: 0, 2, 4, and 8 μmol·L−1); HepG2 cells were firstly treated with pcDNA3.1-IGF2BP2 and pcDNA3.1-NC respectively for 6 h, then with 8 μmol·L−1 NaAsO2 for 24 h to establish a IGF2BP2 overexpression cell model (the experiment was divided into 4 groups: control, NaAsO2, NaAsO2+pcDNA3.1-IGF2BP2, and NaAsO2+pcDNA3.1-NC); finally the cells were subject to 100 nmol·L−1 insulin stimulation for 30 min. Glycogen and glucose in HepG2 cells were determined by glycogen and glucose assay kits; mRNA expression levels of IGF2BP2 were measured by quantitative real-time PCR; protein expression levels of IGF2BP2, PPAR-γ, and GLUT4 in HepG2 were detected by Western blot (WB); and the binding of IGF2BP2 to PPAR-γ and PPAR-γ to GLUT4 was verified by co-immunoprecipitation (CO-IP) experiment. Results The results of CCK8 experiment showed a dose-effect relationship between NaAsO2 concentration and cell viability. When the concentration of NaAsO2 was ≥4 μmol·L−1 , the cell viabilities were lower than that of the control group (P <0.05). With the increasing dose of NaAsO2 infection, reduced glucose consumption and glycogen levels in HepG2 cells were found in the 2, 4, and 8 μmol·L−1 NaAsO2 treatment groups compared to the control group (P <0.05). The difference between the mRNA expression level of IGF2BP2 in the HepG2 cells treated with 4 or 8 μmol L−1 NaAsO2 and the control group was significant (P <0.05). In the IGF2BP2 overexpression cell model, compared with the control group, glucose consumption and glycogen levels were lowered in the NaAsO2 group (P <0.05), the mRNA expression level of IGF2BP2 and the protein expression levels of IGF2BP2, PPAR-γ, and GLUT4 in the cell membrane were all decreased (P <0.05). Compared with the NaAsO2 group, the glucose consumption and glycogen levels were increased in the NaAsO2+pcDNA3.1-IGF2BP2 group (P <0.05), and the mRNA expression level of IGF2BP2 and the protein expression levels of IGF2BP2, PPAR-γ, and GLUT4 in the cell membrane were all increased (P <0.05). The results of CO-IP experiments showed that IGF2BP2 interacted with PPAR-γ as well as PPAR-γ with GLUT4 protein. Conclusion IGF2BP2 is involved in arsenic exposure-induced insulin resistance in HepG2 cells by acting on the PPAR-γ/GLUT4 pathway.
6.Research progress on T cell exhaustion in immunotherapy for patients with hepatocellular carcinoma.
Yang WU ; Tian LI ; Runbing ZHANG ; Yani ZHANG ; Lingling ZHU ; Tingting SHI ; Shunna WANG ; Meixia YANG ; Xiaohui YU ; Jiucong ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):271-277
Hepatocellular carcinoma (HCC) is one of the fastest growing cancers in the world, ranking fourth among the causes of cancer-induced death in the world. At present, the field of HCC treatment is developing rapidly, and immunotherapy has been recognized as a promising treatment method, in which T cells play a key role in HCC immunotherapy. However, in the case of virus infection or in tumor microenvironment (TME), T cells will be continuously stimulated by antigens and then fall into the state of T cell exhaustion (Tex). This state will not only reduce the immunity of patients but also lead to poor efficacy of immunotherapy. Therefore, to deeply analyze the mechanism of Tex and to explore effective strategies to reverse Tex is the key point in the immunotherapy for HCC. This review aims to summarize the mechanism of Tex in HCC patients, and the current situation and shortcomings of drug research and development to reverse Tex at this stage, in order to provide theoretical basis for the optimization of immunotherapy regimen for HCC patients.
Humans
;
Carcinoma, Hepatocellular/therapy*
;
Liver Neoplasms/therapy*
;
Immunotherapy/methods*
;
T-Lymphocytes/immunology*
;
Tumor Microenvironment/immunology*
;
Animals
;
T-Cell Exhaustion
7.Effect of Lymph Node Clearance Modalities on Chronic Cough after Surgery in Non-small Cell Lung Cancer.
Zekai ZHANG ; Gaoxiang WANG ; Zhengwei CHEN ; Mingsheng WU ; Xiao CHEN ; Tian LI ; Xiaohui SUN ; Mingran XIE
Chinese Journal of Lung Cancer 2025;28(6):434-440
BACKGROUND:
Lung cancer has the highest mortality rate among all malignant tumors, and non-small cell lung cancer (NSCLC) accounts for about 80%-85% of all lung cancers. Lobectomy and lymph node dissection are one of the most important treatment methods, and lymph node dissection, as an important part, has attracted much attention. And its mode and scope of dissection may affect postoperative complications, particularly the occurrence of chronic cough. The aim of this study is to investigate the effect of lymph node dissection on postoperative chronic cough in patients with NSCLC undergoing lobectomy, and to provide clinical evidence for optimizing surgical strategy and reducing postoperative chronic cough.
METHODS:
A retrospective analysis was conducted on the clinical data of 365 NSCLC patients who underwent lobectomy at the First Affiliated Hospital of University of Science and Technology of China from December 2020 to December 2023. The relationship between clinical characteristics and postoperative chronic cough was analyzed. The Chinese version of the Leicester Cough Questionnaire (LCQ-MC) scores were collected from the patients at 2 time points: 1 day before surgery and 8 weeks after surgery. Patients were divided according to lymph node dissection methods, to explore the relationship between lymph node dissection and chronic cough after lobectomy. Additionally, patients were divided into chronic cough and non-chronic cough groups based on the presence of postoperative chronic cough, to investigate whether perioperative data, lymph node dissection methods, and lymph node dissection regions were influencing factors.
RESULTS:
Patients undergoing lobectomy were more likely to have chronic cough after surgery in the systematic lymph node dissection group than in the lymph node sampling group (P<0.05). LCQ-MC scale evaluation showed that the psychological, physiological, social and total score of the patients in systematic lymph node dissection group were significantly lower than those in lymph node sampling group (P<0.05). Multivariate analysis showed that anesthesia time, operation site, lymph node dissection method, whether to perform upper mediastinal lymph node dissection, number of upper mediastinal lymph node dissection, whether to perform lower mediastinal lymph node dissection and total number of lymph node dissection were independent risk factors for postoperative chronic cough in NSCLC patients (P<0.05).
CONCLUSIONS
When NSCLC patients underwent lobectomy, lymph node sampling was associated with a significantly lower risk of chronic cough than systematic lymph node dissection. Dissecting lymph nodes in the upper and lower mediastinal regions and the number of lymph nodes dissected may increase the risk of postoperative cough and reduce the quality of life of patients after surgery.
Humans
;
Carcinoma, Non-Small-Cell Lung/surgery*
;
Male
;
Female
;
Lung Neoplasms/surgery*
;
Middle Aged
;
Cough/etiology*
;
Retrospective Studies
;
Lymph Node Excision/methods*
;
Aged
;
Chronic Disease
;
Postoperative Complications/etiology*
;
Adult
;
Lymph Nodes/surgery*
;
Pneumonectomy/adverse effects*
;
Chronic Cough
8.Advancing network pharmacology with artificial intelligence: the next paradigm in traditional Chinese medicine.
Xin SHAO ; Yu CHEN ; Jinlu ZHANG ; Xuting ZHANG ; Yizheng DAI ; Xin PENG ; Xiaohui FAN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1358-1376
Network pharmacology has gained widespread application in drug discovery, particularly in traditional Chinese medicine (TCM) research, which is characterized by its "multi-component, multi-target, and multi-pathway" nature. Through the integration of network biology, TCM network pharmacology enables systematic evaluation of therapeutic efficacy and detailed elucidation of action mechanisms, establishing a novel research paradigm for TCM modernization. The rapid advancement of machine learning, particularly revolutionary deep learning methods, has substantially enhanced artificial intelligence (AI) technology, offering significant potential to advance TCM network pharmacology research. This paper describes the methodology of TCM network pharmacology, encompassing ingredient identification, network construction, network analysis, and experimental validation. Furthermore, it summarizes key strategies for constructing various networks and analyzing constructed networks using AI methods. Finally, it addresses challenges and future directions regarding cell-cell communication (CCC)-based network construction, analysis, and validation, providing valuable insights for TCM network pharmacology.
Medicine, Chinese Traditional/methods*
;
Artificial Intelligence
;
Network Pharmacology/methods*
;
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Drug Discovery
9.Clinical characteristics of sudden sensorineural hearing loss patients accompanying diabetes mellitus and efficacy analysis via propensity score matchin.
Xiaohui ZHAO ; Suwei MA ; Qingxuan CUI ; Jiao ZHANG ; Dayong WANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(3):207-213
Objective:To summarize and analyze the clinical characteristics of patients with sudden sensorineural hearing loss(SSHL) accompanying diabetes mellitus, to explore whether diabetes affects the treatment outcomes during hospitalization, and to identify the factors influencing the efficacy of SSHL patients with diabetes. Methods:A retrospective analysis was conducted on clinical data from 939 patients with SSHL. The baseline characteristics, and onset conditions of the diabetes group(79 cases) and the non-diabetes group(860 cases) were compared. Propensity score matching(PSM) was applied in a 1︰ 2 ratio to match initial hearing levels with baseline characteristics such as age, sex, and BMI, resulting in 73 diabetes cases and 144 non-diabetes cases for treatment efficacy comparison. For the analysis of prognostic factors, a logistic regression model was established based on the treatment outcomes of 217 patients with SSHL. Results:The proportion of SSHL patients accompanying diabetes was 8.40%(79/939). Compared to non-diabetic patients, those with diabetes were older(median age of 53 years in the diabetes group and 39 years in the non-diabetes group) and had a higher proportion of hypertension(43.04% vs 12.67%), with significant difference observed(P<0.05). After PSM, the treatment efficacy during hospitalization was better in the diabetes group than in the non-diabetes group(58.90% vs 47.92%), although the difference was not statistically significant(P>0.05). The prognosis of patients with SSNHL accompanied by diabetes was analyzed using a multivariate logistic regression model that included age, HDL-C, and INR as variables; however, no statistically significant differences were found(P>0.05). Conclusion:Patients with SSHL accompanying diabetes are generally older with a higher incidence of hypertension. The presence of diabetes does not affect the treatment outcomes during hospitalization.
Humans
;
Propensity Score
;
Retrospective Studies
;
Hearing Loss, Sensorineural/therapy*
;
Hearing Loss, Sudden/therapy*
;
Middle Aged
;
Diabetes Mellitus
;
Male
;
Female
;
Prognosis
;
Adult
;
Logistic Models
;
Diabetes Complications
;
Aged
;
Treatment Outcome
10.Investigation and Trend Prediction of Disease Burden of Hypertensionin the Elderly Population Globally and in China from 1990 to 2021
Xiaoxiao ZHAO ; Xiaohui LU ; Lixin KE ; Wulin GAO ; Xiangran MENG ; Lili REN ; Yunhan DING ; Qiang ZHANG ; Yangqin XUN ; Jibiao WU ; Cuncun LU
Medical Journal of Peking Union Medical College Hospital 2025;16(3):647-658
To analyze the disease burden of hypertension in the elderly population from 1990 to 2021 and to predict future trends in China and globally, thereby providing insights for public health decision-making regarding older adults with hypertension in China. Data on hypertension-related deaths and disability adjusted life years (DALYs) for individuals aged ≥60 years was extracted from the Global Burden of Disease (GBD)2021 database for the world, China, and five sociodemographic index (SDI) regions. Age-standardized mortality and DALYs rates for hypertension in the elderly population were calculated, and Joinpoint regression was used to assess trend changes of disease burden, with results reported as average annual percentage change (AAPC). Additionally, subgroup analyses were conducted based on age and sex. The relative impact of aging, population growth, and epidemiological changes on disease burden was analyzed using a three-factor decomposition method. Future projections for the disease burden from 2022 to 2040 were performed using a Bayesian model. From 1990 to 2021, both age-standardized mortality and DALYs rates for hypertension in the elderly population demonstrated a significant downward trend globally and in China (both AAPC values were negative, all Although age-standardized mortality and DALYs rates for hypertension among the elderly in China have shown a downward trend over the past three decades, the absolute burden remains substantial. There is an urgent need for the formulation and implementation of more effective public health policies and clinical interventions to address this critical public health challenge.

Result Analysis
Print
Save
E-mail