1.Expression of human alpha-galactosidase and alpha1,2-fucosyltransferase genes modifies the cell surface Galalpha1,3Gal antigen and confers resistance to human serum-mediated cytolysis.
Yanjun JIA ; Huiming REN ; Xin GAO ; Shouping JI ; Jun YANG ; Zepeng LIU ; Subo LI ; Yangpei ZHANG
Chinese Medical Sciences Journal 2004;19(1):31-37
OBJECTIVETo explore the strategies which reduce the amount of xenoantigen Galalpha1,3Gal.
METHODSHuman alpha-galactosidase gene and alpha1,2-fucosyltransferase gene were transferred into cultured porcine vascular endothelial cells PEDSV.15 and human alpha-galactosidase transgenic mice were produced. The Galalpha1,3Gal on the cell surface and susceptibility of cells to human antibody-mediated lysis were analyzed.
RESULTSHuman alpha-galactosidase gene alone reduced 78% of Galalpha1,3Gal on PEDSV.15 cell surface while human alpha-galactosidase combined with alpha1,2-fucosyltransferase genes removed Galalpha1,3Gal completely. Decrease of Galalpha1,3Gal could reduce susceptibility of cells to human antibody-mediated lysis, especially during co-expression of alpha-galactosidase gene and alpha1,2-fucosyltransferase gene. RT-PCR indicated positive human alpha-galactosidase gene expression in all organs of positive human alpha-galactosidase transgenic F1 mice including heart, liver, kidney, lung, and spleen, the amount of Galalpha1,3Gal antigens on which was reduced largely. 58% of spleen cells from F1 mice were destroyed by complement-mediated lysis compared with 24% of those from normal mice.
CONCLUSIONSHuman alpha-galactosidase gene and alpha1,2-fucosyltransferase gene effectively reduce the expression of Galalpha1,3Gal antigens on endothelial cell surface and confers resistance to human serum-mediated cytolysis. The expression of human alpha-galactosidase in mice can also eliminate the Galalpha1,3Gal antigens in most tissues and decrease the susceptibility of spleen cells to human serum-mediated cytolysis.
Animals ; Antigens, Heterophile ; metabolism ; Cell Death ; Cells, Cultured ; Disaccharides ; metabolism ; Endothelial Cells ; metabolism ; Fucosyltransferases ; genetics ; metabolism ; Graft Rejection ; genetics ; Humans ; Mice ; Mice, Transgenic ; Spleen ; cytology ; Swine ; Transfection ; alpha-Galactosidase ; genetics ; metabolism
2. A retrospective study of docetaxel combined with ADT therapy in the treatment of metastatic hormone-sensitive prostate cancer
Bijun LIAN ; Jing LI ; Huan CHEN ; Feng ZHU ; Min QU ; Yan WANG ; Zepeng JIA ; Xu GAO
Chinese Journal of Urology 2020;41(1):26-31
Objective:
To investigte the efficacy of docetaxel combined with androgen deprivation therapy for the treatment of metastatic hormone-sensitive prostate cancer based on Chinese population.
Methods:
A total of 497 patients were enrolled from January 2004 to July 2018 in the Changhai Hospital. 459 patients received androgen deprivation therapy alone and 38 patients received androgen deprivation therapy combined with docetaxel. The mean age was (72.1±8.7)years. The median PSA level was 100.0 ng/ml, ranging 42.3-999.0 ng/ml. Patients of clinical T2, T3, T4 stage were 213(42.9%), 160(32.2%), 124(24.9%), respectively. Patients of clinical N0, N1, Nx stage were 319(64.2%), 144(29.0%), 34(6.8%), respectively. Patients of clinical M0, M1a, M1b, M1c, Mx stage were 100(20.1%), 51(10.3%), 332(66.8%), 9(1.8%), 5(1.0%), respectively. Gleason scores of biopsy showed that 146(29.4%) patients was ≤7, 103(20.7%) was 8 and 248(49.9%)was ≥9. Propensity score matching was used to match the baseline between groups. Caliper value was set at 0.02. SPSS 22 software was used to achieve a 1∶1 match between the two groups. There were no statistical difference in the age(
3.Analysis of the types and functions of CD34 + cells in full-thickness skin defect wounds of normal mice and diabetic mice by single-cell RNA sequencing
Jia HE ; Jingru WANG ; Wenjun GAN ; Guiqiang LI ; Qi XIN ; Zepeng LIN ; Shubin RUAN ; Xiaodong CHEN
Chinese Journal of Burns 2024;40(3):230-239
Objective:To analyze the types and functions of CD34 + cells in full-thickness skin defect wounds of normal mice and diabetic mice by single-cell RNA sequencing. Methods:This study was an experimental study. The CD34 + cell lineage tracing mouse was produced, and the visualization of CD34 + cells under the fluorescent condition was realized. Six male CD34 + cell lineage tracing mice aged 7-8 weeks (designated as diabetic group) were intraperitoneally injected with streptozotocin to establish a diabetic model, and full-thickness skin defect wounds were prepared on their backs when they reached 13 weeks old. Another 6 male CD34 + cell lineage tracing mice aged 13 weeks (designated as control group) were also subjected to full-thickness skin defect wounds on their backs. On post-injury day (PID) 4, wound tissue was collected from 3 mice in control group and 2 mice in diabetic group, and digested to prepare single-cell suspensions. CD34 + cells were screened using fluorescence-activated cell sorting, followed by single-cell RNA sequencing. The Seurat 4.0.2 program in the R programming language was utilized for dimensionality reduction, visualization, and cell clustering analysis of CD34 + cell types, and to screen and annotate the marker genes for each CD34 + cell subpopulation. Kyoto encyclopedia of genes and genomes (KEGG) and gene ontology (GO) enrichment analysis was performed to analyze the differentially expressed genes (DEGs) of CD34 + fibroblasts (Fbs), smooth muscle cells (SMCs), keratinocytes (KCs), and chondrocyte-like cells (CLCs) in the wound tissue of two groups of mice for exploring cellular functions. Results:On PID 4, CD34 + cells in the wound tissue of both groups of mice were consisted of 7 cell types, specifically endothelial cells, Fbs, KCs, macrophages, T cells, SMCs, and CLCs. Among these, Fbs were further classified into 5 subpopulations. Compared with those in control group, the proportions of CD34 + endothelial cells, Fbs subpopulation 1, Fbs subpopulation 4, KCs, and CLCs in the wound tissue of mice were increased in diabetic group, while the proportions of CD34 + Fbs subpopulation 2, Fbs subpopulation 3, and SMCs were decreased. The marker genes for annotating CD34 + CLCs, endothelial cells, Fbs subpopulation 1, Fbs subpopulation 2, Fbs subpopulation 3, Fbs subpopulation 4, Fbs subpopulation 5, KCs, macrophages, SMCs, and T cells were respectively metastasis-associated lung adenocarcinoma transcript 1, fatty acid binding protein 4, Gremlin 1, complement component 4B, H19 imprinted maternally expressed transcript, Dickkopf Wnt signaling pathway inhibitor 2, fibromodulin, keratin 5, CD74 molecule, regulator of G protein signaling 5, and inducible T-cell co-stimulator molecule. KEGG and GO enrichment analysis revealed that, compared with those in control group, DEGs with significant differential expression (SDE) in CD34 + Fbs from the wound tissue of mice in diabetic group on PID 4 were significantly enriched in terms related to inflammatory response, extracellular matrix (ECM) organization, regulation of cell proliferation, and aging (with Pvalues all <0.05), DEGs with SDE in CD34 + SMCs were significantly enriched in terms related to cell migration, apoptotic process, positive regulation of transcription, and phagosome (with P values all <0.05), DEGs with SDE in CD34 + KCs were significantly enriched in terms related to mitochondrial function, transcription, and neurodegenerative diseases (with P values all <0.05), and DEGs with SDE in CD34 + CLCs were significantly enriched in terms related to rhythm regulation, ECM, and viral infection (with P values all <0.05). Conclusions:CD34 + cells display high heterogeneity in the healing process of full-thickness skin defect wounds in both normal mice and diabetic mice. The significantly enriched functions of DEGs with SDE in CD34 + cell subpopulations in the wound tissue of the two mouse groups are closely related to the wound healing process.