1.Expression and characterization of porcine epidermal growth factor in Lactobacillus plantarum.
Zemin ZHONG ; Qiang LAI ; Xiyao YU ; Dehui LIU ; Yumao HUANG
Chinese Journal of Biotechnology 2015;31(9):1325-1334
Epidermal growth factor (EGF) is an epithelial cell growth factor that can stimulate intestinal development, repair the damage of epidermal cells as well as reduce the incidence of pathogen infection and diarrhea. In order to produce a recombinant Lactobacillus plantarum (L. plantarum) expressing porcine epidermal growth factor (pEGF), we constructed a recombinant vector stably expressing pEGF in L. plantarum strains. First, L. plantarum strain Lp-1 was isolated from intestinal contents of piglets. Then the functional domain of pEGF, M6 precursor protein signal peptide (SP) and super strong constitutive promoter (SCP) were connected with the backbone plasmid pIAβ8 to construct the recombinant vector that was transformed into Lp-1 by electroporation. Afterwards, pEGF was expressed in Lp-1 and detected by Tricine-SDS-PAGE and ELISA. After orally irrigated early-weaned BALB/c mice with the recombinant L. plantarum every morning and late afternoon for 10 consecutive days, body weight, villous height and crypt depth in the intestine were measured to examine the influence of the recombinant bacteria on the intestinal development of early-weaned mice in vivo. Finally, the results of our experiments demonstrated that pEGF was successfully expressed in Lp-1 and the molecular weight of pEGF was 6 kDa. In addition, the recombinant pEGF can enhanced the daily gain and exerted significance influence (P < 0.05) to the small intestinal morphology of early-weaned BALB/c mice. In conclusion, pEGF could be expressed in L. plantarum and the recombinant pEGF possesses good biological activity.
Animals
;
Electrophoresis, Polyacrylamide Gel
;
Epidermal Growth Factor
;
biosynthesis
;
Genetic Vectors
;
Intestines
;
microbiology
;
Lactobacillus plantarum
;
metabolism
;
Mice
;
Mice, Inbred BALB C
;
Plasmids
;
Promoter Regions, Genetic
;
Protein Precursors
;
Protein Sorting Signals
;
Recombinant Proteins
;
biosynthesis
;
Swine
2.Long-pulsed 1064 nm Nd: YAG laser combined with terbinafine against chromoblastomycosis caused by and the effect of laser therapy in a Wistar rat model.
Juan LUO ; Peiying FENG ; Yongxuan HU ; Yemei YANG ; Sitong ZHOU ; Songgen HUANG ; Abdulla JADAD ; Zemin ZHONG ; Yushi ZHENG ; Kangxing LIU ; Yan LU ; Yanqing HU ; Xianyi ZHOU
Journal of Southern Medical University 2019;39(6):712-717
We report a case of chromoblastomycosis caused by , which was successfully treated by long-pulsed 1064 nm Nd: YAG laser combined with terbinafine. A 60-year-old man was admitted for the presence of a 30 mm×40 mm erythematous plaque on the dorsum of his right hand for about 10 months without any subjective symptoms. Both microscopic examination and tissue biopsy of the lesion showed characteristic sclerotic bodies of chromoblastomycosis. Lesion tissue culture on SDA at 26 ℃ for 2 weeks resulted in a black colony, and slide culture identified the isolate as Fonsecaea species. ITS sequence analysis of the isolate showed a 99% homology with strain KX078407. The susceptibility of the isolate to 9 antifungal agents was determined using the microdilution method according to the guidelines of CLSI M38-A2 protocol, and terbinafine showed the lowest MIC (0.125 μg/ml). We subsequently established a Wistar rat model of chromoblastomycosis using the clinical isolate and treated the rats with long-pulsed 1064 nm Nd: YAG laser (pulse width of 3.0 ms, fluence of 24 J/cm, spot size of 3 mm, frequency of 4 Hz, repeated 3 times at an interval of 30 s) twice a week for a total of 8 sessions. Although the laser treatment alone was not able to eliminate the fungi, histopathological examination showed the aggregation of numerous lymphocytes in the local affected tissue, indicating an immune response that consequently facilitate the regression of the lesion. The patient was successfully treated by long-pulsed 1064 nm Nd: YAG laser once a week combined with terbinafine (0.25 /bid) for 8 weeks, and follow-up for 20 months did not reveal any signs of recurrence.
Animals
;
Chromoblastomycosis
;
Humans
;
Laser Therapy
;
Lasers, Solid-State
;
Male
;
Middle Aged
;
Rats
;
Rats, Wistar
;
Terbinafine
;
Treatment Outcome
3.The lysine methyltransferase SMYD2 facilitates neointimal hyperplasia by regulating the HDAC3-SRF axis.
Xiaoxuan ZHONG ; Xiang WEI ; Yan XU ; Xuehai ZHU ; Bo HUO ; Xian GUO ; Gaoke FENG ; Zihao ZHANG ; Xin FENG ; Zemin FANG ; Yuxuan LUO ; Xin YI ; Ding-Sheng JIANG
Acta Pharmaceutica Sinica B 2024;14(2):712-728
Coronary restenosis is an important cause of poor long-term prognosis in patients with coronary heart disease. Here, we show that lysine methyltransferase SMYD2 expression in the nucleus is significantly elevated in serum- and PDGF-BB-induced vascular smooth muscle cells (VSMCs), and in tissues of carotid artery injury-induced neointimal hyperplasia. Smyd2 overexpression in VSMCs (Smyd2-vTg) facilitates, but treatment with its specific inhibitor LLY-507 or SMYD2 knockdown significantly inhibits VSMC phenotypic switching and carotid artery injury-induced neointima formation in mice. Transcriptome sequencing revealed that SMYD2 knockdown represses the expression of serum response factor (SRF) target genes and that SRF overexpression largely reverses the inhibitory effect of SMYD2 knockdown on VSMC proliferation. HDAC3 directly interacts with and deacetylates SRF, which enhances SRF transcriptional activity in VSMCs. Moreover, SMYD2 promotes HDAC3 expression via tri-methylation of H3K36 at its promoter. RGFP966, a specific inhibitor of HDAC3, not only counteracts the pro-proliferation effect of SMYD2 overexpression on VSMCs, but also inhibits carotid artery injury-induced neointima formation in mice. HDAC3 partially abolishes the inhibitory effect of SMYD2 knockdown on VSMC proliferation in a deacetylase activity-dependent manner. Our results reveal that the SMYD2-HDAC3-SRF axis constitutes a novel and critical epigenetic mechanism that regulates VSMC phenotypic switching and neointimal hyperplasia.