1.Salvianolate injection ameliorates cardiomyopathy by regulating autophagic flux through miR-30a/becn1 axis in zebrafish.
Jianxuan LI ; Yang ZHANG ; Zhi ZUO ; Zhenzhong ZHANG ; Ying WANG ; Shufu CHANG ; Jia HUANG ; Yuxiang DAI ; Junbo GE
Chinese Medical Journal 2025;138(20):2604-2614
BACKGROUND:
Salvianolate is a compound mainly composed of salvia magnesium acetate, which is extracted from the Chinese herb Salvia miltiorrhiza . In recent years, salvianolate injection has been widely used in the treatment of cardiovascular diseases, but the mechanism of how it can alleviate cardiotoxicity remains unclear.
METHODS:
The cardiac injury model was constructed by treatment with doxorubicin (Dox) or azithromycin (Azi) in zebrafish larvae. Heart phenotype, heart rate, and cardiomyocyte apoptosis were observed in the study. RNA-sequencing (RNA-seq) analysis was used to explore the underlying mechanism of salvianolate treatment. Moreover, cardiomyocyte autophagy was assessed by in situ imaging. In addition, the miR-30a/becn1 axis regulation by salvianolate was further investigated.
RESULTS:
Salvianolate treatment reduced the proportion of pericardial edema, recovered heart rate, and inhibited cardiomyocyte apoptosis in Dox/Azi-administered zebrafish larvae. Mechanistically, salvianolate regulated the lysosomal pathway and promoted autophagic flux in zebrafish cardiomyocytes. The expression level of becn1 was increased in Dox-induced myocardial tissue injury after salvianolate administration; overexpression of becn1 in cardiomyocytes alleviated the Dox/Azi-induced cardiac injury and promoted autophagic flux in cardiomyocytes, while becn1 knockdown blocked the effects of salvianolate. In addition, miR-30a, negatively regulated by salvianolate, partially inhibited the cardiac amelioration of salvianolate by targeting becn1 directly.
CONCLUSION
This study has proved that salvianolate reduces cardiomyopathy by regulating autophagic flux through the miR-30a/becn1 axis in zebrafish and is a potential drug for adjunctive Dox/Azi therapy.
Animals
;
Zebrafish
;
MicroRNAs/genetics*
;
Autophagy/drug effects*
;
Myocytes, Cardiac/metabolism*
;
Cardiomyopathies/metabolism*
;
Beclin-1/genetics*
;
Apoptosis/drug effects*
;
Plant Extracts/therapeutic use*
;
Doxorubicin
2.Neuroprotective effects of idebenone combined with borneol via the dopamine signaling pathway in a transgenic zebrafish model of Parkinson's disease.
Qifei WANG ; Yayun ZHONG ; Yanan YANG ; Kechun LIU ; Li LIU ; Yun ZHANG
Journal of Biomedical Engineering 2025;42(5):1046-1053
The aim of this study is to investigate the protective effect of idebenone (IDE) combined with borneol (BO) against Parkinson's disease (PD). In this study, wild-type AB zebrafish and transgenic Tg ( vmat2: GFP) zebrafish with green fluorescence labeled dopamine neurons were used to establish the PD model with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP). Following drug treatment, the behavioral performance and dopamine neuron morphology of zebrafish were evaluated, and regulation of dopamine signaling pathway-related genes was determined using RT-qPCR. The results showed that IDE combined with BO improved the behavioral disorders of zebrafish such as bradykinesia and shortening movement distance, also effectively reversed the damage of MPTP-induced dopaminergic neurons. At the same time, the expression of dopamine synthesis and transportation-related genes was up-regulated, and the normal function of the signal transduction pathway was restored. The combination showed a better therapeutic effect compared to the IDE monotherapy group. This study reveals the protective mechanism of IDE combined with BO on the central nervous system for the first time, which provides an important experimental basis and theoretical reference for clinical combination strategy in PD treatment.
Animals
;
Zebrafish
;
Signal Transduction/drug effects*
;
Animals, Genetically Modified
;
Dopamine/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Disease Models, Animal
;
Camphanes/pharmacology*
;
Ubiquinone/pharmacology*
;
Parkinson Disease/drug therapy*
;
Dopaminergic Neurons/metabolism*
3.Inhibitory Effects of Nardostachys Jatamansi DC. Volatile Oil on Psychological Factors SP/CORT-Induced Hyperpigmentation.
Man YANG ; Kang CHENG ; Jie GU ; Hua-Li WU ; Yi-Ming LI
Chinese journal of integrative medicine 2025;31(12):1097-1104
OBJECTIVE:
To explore the inhibitory effects of Nardostachys Jatamansi DC. volatile oil (NJVO) on psychological factors substance P (SP)/cortisol (CORT)-induced hyperpigmentation.
METHODS:
The model of psychologically-induced hyperpigmentation of B16F10 cells was created using SP (10 nmol/L) + CORT (10 µmol/L) for 72 h. The levels of melanin content, tyrosinase (TYR) activity using NaOH lysis and L-dihydroxyphenylalanine (L-DOPA) oxidation methods were assessed, respectively. The effect of NJVO on SP/CORT-induced normal human skin tissue pigmentation was detected by Masson staining. Protein expressions of tyrosinase-related protein 1 (TRP-1), tyrosinase-relative protein 2 (DCT), and microphthalmia-associated transcription factor were determined using Western blot. The melanosome number, maturation, and melanosomal structure changes were detected through transmission electron microscopy and immunofluorescence experiments. In vivo, zebrafish pigment content was evaluated in SP/CORT-induced zebrafish hyperpigmentation model.
RESULTS:
NJVO significantly reduced the melanin content (P<0.01) and inhibited tyrosinase activity (P<0.01), the pigmentation of the normal skin tissue in the NJVO group was significantly lower than that in the SP/CORT group (P<0.05). And NJVO considerably downregulated expressions of melanogenesis-related proteins (TYR, TRP-1, DCT) in cells (P<0.01). In addition, the number of melanosomes was decreased and the dentrites formation of B16F10 cells was inhibited after NJVO treatment (P<0.01). In vivo, NJVO significantly reduced the pigment content in the zebrafish body (P<0.01).
CONCLUSION
NJVO effectively reversed SP/CORT-induced hyperpigmentation by suppressing the activity and expression of TYR and TRPs and inhibiting melanosome maturation in mouse B16F10 melanoma cells.
Animals
;
Hyperpigmentation/psychology*
;
Zebrafish
;
Oils, Volatile/therapeutic use*
;
Melanins/metabolism*
;
Humans
;
Monophenol Monooxygenase/metabolism*
;
Mice
;
Nardostachys/chemistry*
;
Substance P
;
Hydrocortisone
;
Skin Pigmentation/drug effects*
;
Cell Line, Tumor
;
Melanosomes/ultrastructure*
;
Microphthalmia-Associated Transcription Factor/metabolism*
;
Melanoma, Experimental
;
Oxidoreductases/metabolism*
;
Intramolecular Oxidoreductases/metabolism*
4.Lacticaseibacillus paracasei E6 improves vinorelbine-induced immunosuppression in zebrafish through its metabolites acetic acid and propionic acid.
Xu XINZHU ; Lina GUO ; Kangdi ZHENG ; Yan MA ; Shuxian LIN ; Yingxi HE ; Wen SHENG ; Suhua XU ; Feng QIU
Journal of Southern Medical University 2025;45(2):331-339
OBJECTIVES:
To explore the mechanism of Lacticaseibacillus paracasei E6 for improving vinorelbine-induced immunosuppression in zebrafish.
METHODS:
The intestinal colonization of L. paracasei E6 labeled by fluorescein isothiocyanate (FITC) in zebrafish was observed under fluorescence microscope. In a zebrafish model of vinorelbine-induced immunosuppression, the immunomodulatory activity of L. paracasei E6 was assessed by analyzing macrophage and neutrophil counts in the caudal hematopoietic tissue (CHT), the number of T-lymphocyte, and the expressions of interleukin-12 (IL-12) and interferon-γ (IFN-γ). The contents of short-chain fatty acids (SCFAs) in L. paracasei E6 fermentation supernatant and the metabolites of L. paracasei E6 in zebrafish were detected by LC-MS/MS-based targeted metabolomics. The immunomodulatory effects of the SCFAs including sodium acetate, sodium propionate and sodium butyrate were evaluated in the zebrafish model of immunosuppression.
RESULTS:
After inoculation, green fluorescence of FITC-labeled L. paracasei E6 was clearly observed in the intestinal ball, midgut and posterior gut regions of zebrafish. In the immunocompromised zebrafish model, L. paracasei E6 significantly alleviated the reduction of macrophage and neutrophil counts in the CHT, increased the fluorescence intensity of T-lymphocytes, and promoted the expressions of IL-12 and IFN-γ. Compared with MRS medium, L. paracasei E6 fermentation supernatant showed significantly higher levels of acetic acid, propionic acid and butyric acid, which were also detected in immunocompromised zebrafish following treatment with L. paracasei E6. Treatment of the zebrafish model with sodium acetate and sodium propionate significantly increased macrophage and neutrophil counts in the CHT and effectively inhibited vinorelbine-induced reduction of thymus T cells.
CONCLUSIONS
L. paracasei E6 can improve vinorelbine-induced immunosuppression in zebrafish through its SCFA metabolites acetic acid and propionic acid.
Animals
;
Zebrafish/immunology*
;
Acetic Acid/metabolism*
;
Propionates/metabolism*
;
Fatty Acids, Volatile/metabolism*
5.Comparison of anti-inflammatory, antibacterial and analgesic activities of formulated granules versus traditional decoction of Yinqiao Powder.
Zhuolin GUO ; Zhiheng ZHANG ; Xindeng GUO ; Weiwei YANG ; Zhiqing LIANG ; Jinying OU ; Huihui CAO ; Zibin LU ; Linzhong YU ; Junshan LIU
Journal of Southern Medical University 2025;45(5):1003-1012
OBJECTIVES:
To compare the anti-inflammatory, antibacterial and analgesic effects of Yinqiao Powder (YQS) formulated granules and decoction.
METHODS:
We first evaluated the anti-inflammatory effects of the two dosage forms of YQS in a LPS-induced RAW 264.7 cell model using RT-qPCR and Western blotting. We further constructed zebrafish models of inflammation by copper sulfate exposure, caudal fin transection, or LPS and Poly (I:C) microinjection, and evaluated anti-inflammatory effects of YQS granules and decoction by examining neutrophil aggregation and HE staining findings. In a mouse model of acute lung injury (ALI) induced by intratracheal LPS instillation, the effects of YQS gavage at 10, 15, and 20 g/kg on lung pathologies were evaluated by calculating lung wet-dry weight ratio and using HE staining, ELISA and Western blotting. The microbroth dilution method was used to evaluate the antibacterial effect of YQS. Mouse pain models established by hot plate and intraperitoneal injection of glacial acetic acid were used to evaluate the analgesic effects of YQS at 10, 15, and 20 g/kg.
RESULTS:
Both YQS granules and decoction significantly reduced TNF-α, IL-6, and IL-1β expressions and p-STAT3 (Tyr 705) phosphorylation level in LPS-induced RAW 264.7 cells, and obviously inhibited neutrophil aggregation in the zebrafish models. In ALI mice, YQS granules and decoction effectively ameliorated lung injury, lowered lung wet-dry weight ratio, and reduced p-STAT3 (Tyr 705) expression and TNF-α and IL-6 levels. YQS produced obvious antibacterial effect at the doses of 15.63 and 31.25 mg/mL, and significantly reduced body torsion and increased pain threshold in the mouse pain models.
CONCLUSIONS
The two dosage forms of TQS have similar anti-inflammatory, antibacterial and analgesic effects with only differences in their inhibitory effect on TNF-α, IL-6 and IL-1β mRNA expressions in LPS-induced RAW 264.7 cells.
Animals
;
Mice
;
Drugs, Chinese Herbal/pharmacology*
;
Anti-Inflammatory Agents/pharmacology*
;
Analgesics/pharmacology*
;
RAW 264.7 Cells
;
Zebrafish
;
Anti-Bacterial Agents/pharmacology*
;
Powders
;
Tumor Necrosis Factor-alpha/metabolism*
;
Acute Lung Injury/drug therapy*
;
Interleukin-6/metabolism*
;
Lipopolysaccharides
6.Inhibition of ferroptosis alleviates acute kidney injury caused by diquat in zebrafish.
Zejin OU ; Ying LI ; Shi CHEN ; Ziyi WANG ; Meiyi HE ; Zhicheng CHEN ; Shihao TANG ; Xiaojing MENG ; Zhi WANG
Journal of Southern Medical University 2025;45(8):1743-1750
OBJECTIVES:
To investigate the role of ferroptosis in diquat-induced acute kidney injury (AKI) and its molecular mechanisms.
METHODS:
Transgenic zebrafish models with Tg (Eco.Tshb:EGFP) labeling of the renal tubules and Tg (lyz:dsRed2) labeling of the neutrophils were both divided into control group, gentamicin (positive control) group, diquat poisoning group, ferroptosis inhibitor group. The indicators of kidney injury, inflammatory response, and ferroptosis were examined in the zebrafish, and the changes in expressions of voltage-dependent anion-selective channel protein 1 (VDAC1) and mitochondrial ferritin (FTMT) were detected using Western blotting.
RESULTS:
AKI induced by diquat exhibited a significant dose-effect relationship, and the severity of injury was proportional to the exposure concentration. Diquat also caused marked oxidative stress and inflammatory responses in the zebrafish models. Rhodamine metabolism assay and HE staining revealed significantly declined glomerular filtration function of the zebrafish as diquat exposure concentration increased. Immunofluorescence staining highlighted significant changes in the expressions of ferroptosis markers GPX4 and FTH1 in zebrafish renal tissues following diquat exposure. In diquat-exposed zebrafish, treatment with ferrostatin-1, a ferroptosis inhibitor, obviously upregulated GPX4 and downregulated FTH1 expressions and improved the metabolic rate of glucan labeled with rhodamine B. Diquat exposure significantly upregulated the expression of VDAC1 and FTMT in zebrafish, and the application of ferrostatin-1 and VBIT-12 (a VDAC1 inhibitor) both caused pronounced downregulation of FTMT expression.
CONCLUSIONS
Ferroptosis is a critical mechanism underlying diquat-induced AKI, in which VDAC1 and FTMT play important regulatory roles, suggesting their potential as therapeutic target for AKI caused by diquat.
Animals
;
Zebrafish
;
Ferroptosis/drug effects*
;
Acute Kidney Injury/chemically induced*
;
Diquat/toxicity*
;
Animals, Genetically Modified
;
Voltage-Dependent Anion Channel 1/metabolism*
;
Ferritins/metabolism*
;
Oxidative Stress
7.Lactobacillus plantarum ZG03 alleviates oxidative stress via its metabolites short-chain fatty acids.
Shuxian LIN ; Lina GUO ; Yan MA ; Yao XIONG ; Yingxi HE ; Xinzhu XU ; Wen SHENG ; Suhua XU ; Feng QIU
Journal of Southern Medical University 2025;45(10):2223-2230
OBJECTIVES:
To investigate the efficacy of Lactobacillus plantarum ZG03 (L. plantarum ZG03) for ameliorating oxidative stress in zebrafish.
METHODS:
We evaluated the growth pattern of L. plantarum ZG03, observed its morphology using field emission scanning electron microscopy, and assessed its safety and potential efficacy with whole-genome sequencing for genetic analysis. FITC-labeled ZG03 was used to observe its intestinal colonization in zebrafish. In a zebrafish model of 2% glucose-induced oxidative stress, the effect of ZG03 was evaluated by assessing the changes in neutrophils in the caudal hematopoietic tissue (CHT), superoxide dismutase (SOD) activity, reactive oxygen species (ROS) levels, and malondialdehyde (MDA) content. Liquid chromatography-mass spectrometry-based targeted metabolomics was used for analyzing short-chain fatty acids (SCFAs) in the zebrafish, and the antioxidant effects of the key metabolites (acetate, propionate, and caproate) were tested.
RESULTS:
On MRS agar, L. plantarum ZG03 formed circular, smooth, moist, and milky-white colonies with a rod-shaped cell morphology. Genomic analysis revealed abundant sugar metabolism gene clusters. After inoculation of FITC-labeled L. plantarum ZG03 in zebrafish, green fluorescence was clearly observed in the intestinal bulb, mid-intestine, and hind intestine. In zebrafish with glucose-induced oxidative stress, L. plantarum ZG03 significantly reduced ROS levels and the number of neutrophils in the CHT with increased SOD activity. L.plantarum ZG03 significantly increased the content of SCFAs including acetic acid, propionic acid, and caproic acid in zebrafish metabolites. In addition, sodium acetate, sodium propionate, and sodium caproate in the SCFAs significantly increased SOD activity in the zebrafish models.
CONCLUSIONS
L. plantarum ZG03 ameliorates oxidative stress in a glucose-induced zebrafish model through its metabolites, particularly the SCFAs including acetic acid, propionic acid and caproic acid.
Animals
;
Zebrafish/metabolism*
;
Oxidative Stress
;
Lactobacillus plantarum/metabolism*
;
Fatty Acids, Volatile/metabolism*
;
Probiotics
;
Reactive Oxygen Species/metabolism*
;
Superoxide Dismutase/metabolism*
8.Reprogramming miR-146b-snphb Signaling Activates Axonal Mitochondrial Transport in the Zebrafish M-cell and Facilitates Axon Regeneration After Injury.
Xin-Liang WANG ; Zong-Yi WANG ; Xing-Han CHEN ; Yuan CAI ; Bing HU
Neuroscience Bulletin 2025;41(4):633-648
Acute mitochondrial damage and the energy crisis following axonal injury highlight mitochondrial transport as an important target for axonal regeneration. Syntaphilin (Snph), known for its potent mitochondrial anchoring action, has emerged as a significant inhibitor of both mitochondrial transport and axonal regeneration. Therefore, investigating the molecular mechanisms that influence the expression levels of the snph gene can provide a viable strategy to regulate mitochondrial trafficking and enhance axonal regeneration. Here, we reveal the inhibitory effect of microRNA-146b (miR-146b) on the expression of the homologous zebrafish gene syntaphilin b (snphb). Through CRISPR/Cas9 and single-cell electroporation, we elucidated the positive regulatory effect of the miR-146b-snphb axis on Mauthner cell (M-cell) axon regeneration at the global and single-cell levels. Through escape response tests, we show that miR-146b-snphb signaling positively regulates functional recovery after M-cell axon injury. In addition, continuous dynamic imaging in vivo showed that reprogramming miR-146b significantly promotes axonal mitochondrial trafficking in the pre-injury and early stages of regeneration. Our study reveals an intrinsic axonal regeneration regulatory axis that promotes axonal regeneration by reprogramming mitochondrial transport and anchoring. This regulation involves noncoding RNA, and mitochondria-associated genes may provide a potential opportunity for the repair of central nervous system injury.
Animals
;
Zebrafish
;
MicroRNAs/genetics*
;
Nerve Regeneration/physiology*
;
Mitochondria/metabolism*
;
Zebrafish Proteins/genetics*
;
Axons/metabolism*
;
Signal Transduction/physiology*
;
Axonal Transport/physiology*
;
Nerve Tissue Proteins/genetics*
9.Novel araucarene diterpenes from Agathis dammara exert hypoglycemic activity by promoting pancreatic β cell regeneration and glucose uptake.
Zhewei YU ; Yi ZHANG ; Wenhui WANG ; XinYi WU ; Shunzhi LIU ; Yanlin BIN ; Hongsheng LI ; Bangping CAI ; Zheng WANG ; Meijuan FANG ; Rong QI ; Mingyu LI ; Yingkun QIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):492-503
In this study, araucarene diterpenes, characterized by a pimarene skeleton with a variably oxidized side chain at C-13, were investigated. A total of 16 araucarene diterpenoids and their derivatives were isolated from the woods of Agathis dammara, including 11 previously unreported compounds: dammaradione (1), dammarones D-G (2, 5, 14, 15), dammaric acids B-F (8-12), and dammarol (16). The structures of these new compounds were elucidated using high-resolution electrospray ionization mass spectroscopy (HR-ESI-MS) and one-dimensional/two-dimensional (1D/2D) nuclear magnetic resonance (NMR), while their absolute configurations were determined through the electronic circular dichroism (ECD) exciton chirality method and Snatzke's method. The hypoglycemic activity of all isolated compounds was evaluated using a transgenic zebrafish model, and a structure-activity relationship (SAR) analysis was conducted. Araucarone (3) and dammaric acid C (9), serving as representative compounds, demonstrated significant hypoglycemic effects on zebrafish. The primary mechanism involves the promotion of pancreatic β cell regeneration and glucose uptake. Specifically, these compounds enhance the differentiation of pancreatic endocrine precursor cells (PEP cells) into β cells in zebrafish.
Zebrafish
;
Animals
;
Diterpenes/isolation & purification*
;
Insulin-Secreting Cells/cytology*
;
Glucose/metabolism*
;
Hypoglycemic Agents/isolation & purification*
;
Molecular Structure
;
Structure-Activity Relationship
;
Plant Extracts/pharmacology*
;
Regeneration/drug effects*
10.Agrimoniae Herba-Coptidis Rhizoma inhibits angiogenesis in colorectal cancer inflammatory microenvironment based on network pharmacology and experiment validation.
Xin-Ling SHEN ; Hai-Yan PENG ; Huang-Jie FU ; Ya-Ping HE ; Zhi-Yu LI ; Min-Yan HOU ; Shu-Juan ZHANG ; Han XIONG
China Journal of Chinese Materia Medica 2024;49(21):5762-5770
This study aims to investigate the effect and mechanism of the herb pair Agrimoniae Herba-Coptidis Rhizoma in inhibiting angiogenesis in the colorectal cancer inflammatory microenvironment by using the method of network pharmacology and the zebrafish model. The method of network pharmacology was employed to obtain the active components, potential core targets, and signaling pathways regulated by the herb pair in inhibiting angiogenesis in the inflammatory microenvironment of colorectal cancer, on the basis of which the underlying mechanism was predicted. The zebrafish model of colorectal cancer was established, and the inflammatory microenvironment was modeled. The effects of different concentrations of the herb pair on the area, number, and length of intersegmental vessels(ISVs) of the zebrafish model were observed. Western blot and real-time quantitative PCR were employed to measure the protein and mRNA levels, respectively, of vascular endothelial growth factor A(VEGFA), vascular epidermal growth factor receptor 2(VEGFR2, also known as kdrl, Flk1), and vascular epidermal growth factor receptor 3(VEGFR3, also known as Flt4). A total of 18 active components and 488 potential targets of Agrimoniae Herba-Coptidis Rhizoma were predicted, and 108 common targets were shared by the herb pair and the disease. According to the results of KEGG pathway enrichment analysis, the angiogenesis-related factors VEGFA, kdrl, and Flt4 in the VEGFA/VEGFR2 signaling pathway were selected for verification. The zebrafish experiment showed that compared with the blank group, the model group showed increased area, number, and length of ISVs in the inflammatory microenvironment. Compared with the model group, the herb pair decreased the area, number, and length of ISVs in a concentration-dependent manner. Compared with the blank group, the model group showed up-regulated protein and mRNA levels of VEGFA, kdrl, and Flt4 in the inflammatory microenvironment. Compared with the model group, the herb pair down-regulated the protein and mRNA levels of VEGFA, kdrl, and Flt4 in a concentration-dependent manner. The results indicated that in the colorectal cancer inflammatory microenvironment, the herb pair Agrimoniae Herba-Coptidis Rhizoma could inhibit angiogenesis via multiple components, targets, and pathways. The anti-angiogenesis effect might be related to the down-regulation of the expression levels of angiogenesis-related factors VEGFA, kdrl, and Flt4 in the VEGFA/VEGFR2 signaling pathway.
Zebrafish
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Network Pharmacology
;
Colorectal Neoplasms/metabolism*
;
Neovascularization, Pathologic/drug therapy*
;
Humans
;
Vascular Endothelial Growth Factor A/metabolism*
;
Tumor Microenvironment/drug effects*
;
Angiogenesis Inhibitors/pharmacology*
;
Vascular Endothelial Growth Factor Receptor-2/metabolism*
;
Signal Transduction/drug effects*
;
Coptis chinensis
;
Inflammation/drug therapy*
;
Angiogenesis

Result Analysis
Print
Save
E-mail