1.Retinol dehydrogenase, RDH1l, is essential for the heart development and cardiac performance in zebrafish.
Wei WANG ; Li-feng ZHANG ; Yong-hao GUI ; Hou-yan SONG
Chinese Medical Journal 2013;126(4):722-728
BACKGROUNDRetinoic acid (RA) is a potent signaling molecule that plays pleiotropic roles in patterning, morphogenesis, and organogenesis during embryonic development. The synthesis from retinol (vitamin A) to retinoic acid requires two sequential oxidative steps. The first step involves the oxidation of retinol to retinal through the action of retinol dehydrogenases. Retinol dehydrogenases1l (RDH1l) is a novel zebrafish retinol dehydrogenase. Herein we investigated the role of zebrafish RDH1l in heart development and cardiac performance in detail.
METHODSRDH1l specific morpholino was used to reduce the function of RDH1l in zebrafish. The gene expressions were observed by using whole mount in situ hybridization. Heart rates were observed and recorded under the microscope from 24 to 72 hours post fertilization (hpf). The cardiac performance was analyzed by measuring ventricular shortening fraction (VSF).
RESULTSThe knock-down of RDH1l led to abnormal neural crest cells migration and reduced numbers of neural crest cells in RDH1l morphant embryos. The reduced numbers of cardiac neural crest cells also can be seen in RDH1l morphant embryos. Furthermore, the morpholino-mediated knock-down of RDH1l resulted in the abnormal heart loop. The left-right determining genes expression pattern was altered in RDH1l morphant embryos. The impaired cardiac performance was observed in RDH1l morphant embryos. Taken together, these data demonstrate that RDH1l is essential for the heart development and cardiac performance in zebrafish.
CONCLUSIONSRDH1l plays a important role in the neural crest cells development, and then ultimately affects the heart loop and cardiac performance. These results show for the first time that an enzyme involved in the retinol to retinaldehyde conversion participate in the heart development and cardiac performance in zebrafish.
Alcohol Oxidoreductases ; genetics ; metabolism ; Animals ; Animals, Genetically Modified ; Heart ; embryology ; Zebrafish ; Zebrafish Proteins ; genetics ; metabolism
2.Zebrafish's Circular RNAs.
Acta Academiae Medicinae Sinicae 2022;44(4):693-698
Circular RNAs (circRNAs),a group of highly conserved small RNAs,are characterized by a closed circular structure from precursor linear RNA through reverse splicing.They are powerful regulators of the physiological and pathological processes in organisms at different development stages.Zebrafish can be used for the high-throughput drug screening with low cost.Thus,the circRNAs associated with development and inflammation can be mined from zebrafish.Recently,a variety of circRNAs in zebrafish have been identified and characterized.Studies have proved that circRNAs play a vital role in the development and inflammation of zebrafish.The paper summarizes the classification,characteristics,and biological functions of circRNAs,and reviews the research progress in zebrafish's circRNAs.
Animals
;
Inflammation
;
RNA/genetics*
;
RNA, Circular
;
Zebrafish/genetics*
3.Establishment and preliminary mechanism study of the zebrafish strain of KIAA0196: A candidate pathogenic gene for heart development.
Haisong BU ; Yifeng YANG ; Xiaoyu LUO ; Shijun HU ; Xueyang GONG ; Tianli ZHAO
Journal of Central South University(Medical Sciences) 2019;44(9):968-975
To explore the effects of KIAA0196 gene on cardiac development and the establishment of zebrafish strain.
Methods: Peripheral blood and gDNA from patients were extracted. Copy number variation analysis and target sequencing were conducted to screen candidate genes. The KIAA0196 knockout zebrafish was generated by CRISPR/Cas9 to detect whether KIAA0196 deficiency could affect cardiac development. Finally, the wild-type and mutant zebrafish were anatomized and histologically stained to observe the phenotype of heart defects.
Results: The KIAA0196 knockout zebrafish strain was successfully constructed using CRISPR/Cas9 technology. After 60 hours fertilization, microscopic examination of KIAA0196 knockout zebrafish (heterozygote + homozygote) showed pericardial effusion, cardiac compression and severely curly tail. Compared with wild-type zebrafish, the hearts of mutant KIAA0196 zebrafish had cardiac defects including smaller atrium and larger ventricle, and the myocardial cells were looser.
Conclusion: KIAA0196 gene plays an important regulatory role in the development of heart. It might be a candidate gene for congenital heart disease.
Animals
;
DNA Copy Number Variations
;
Heart
;
Heart Defects, Congenital
;
genetics
;
Humans
;
Myocytes, Cardiac
;
Phenotype
;
Proteins
;
Zebrafish
;
genetics
;
Zebrafish Proteins
;
genetics
4.Tripterygium wilfordii multiglycoside-induced hepatotoxicity via inflammation and apoptosis in zebrafish.
Xiu-Ying DUAN ; Rui-Jiao MA ; Chung-Der HSIAO ; Zhen-Zhou JIANG ; Lu-Yong ZHANG ; Yun ZHANG ; Ke-Chun LIU
Chinese Journal of Natural Medicines (English Ed.) 2021;19(10):750-757
Tripterygium wilfordii multiglycoside (GTW) is a commonly used compound for the treatment of rheumatoid arthritis (RA) and immune diseases in clinical practice. However, it can induce liver injury and the mechanism of hepatotoxicity is still not clear. This study was designed to investigate GTW-induced hepatotoxicity in zebrafish larvae and explore the mechanism involved. The 72 hpf (hours post fertilization) zebrafish larvae were administered with different concentrations of GTW for three days and their mortality, malformation rate, morphological changes in the liver, transaminase levels, and histopathological changes in the liver of zebrafish larvae were detected. The reverse transcription-polymerase chain reaction (RT-PCR) was used to examine the levels of microRNA-122 (miR-122) and genes related to inflammation, apoptosis, cell proliferation and liver function. The results showed that GTW increased the mortality of zebrafish larvae, while significant malformations and liver damage occurred. The main manifestations were elevated levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), significant liver atrophy, vacuoles in liver tissue, sparse cytoplasm, and unclear hepatocyte contours. RT-PCR results showed that the expression of miR-122 significantly decreased by GTW; the mRNA levels of inflammation-related genes il1β, il6, tnfα, il10, cox2 and ptges significantly increased; the mRNA level of tgfβ significantly decreased; the mRNA levels of apoptosis-related genes, caspase-8 and caspase-9, significantly increased; the mRNA level of bcl2 significantly decreased; the mRNA levels of cell proliferation-related genes, top2α and uhrf1, significantly reduced; the mRNA levels of liver function-related genes, alr and cyp3c1, significantly increased; and the mRNA level of cyp3a65 significantly decreased. In zebrafish, GTW can cause increased inflammation, enhanced apoptosis, decreased cell proliferation, and abnormal expression of liver function-related genes, leading to abnormal liver structure and function and resulting in hepatotoxicity.
Animals
;
Apoptosis
;
Chemical and Drug Induced Liver Injury/genetics*
;
Inflammation/genetics*
;
Trans-Activators
;
Tripterygium
;
Zebrafish/genetics*
;
Zebrafish Proteins
5.Construction of fluorescent transgenic zebrafish Tg (ttn.2: EGFP).
Jiale CHEN ; Qiuxiang CAO ; Hui CAO ; Xiangding CHEN ; Yun DENG
Chinese Journal of Biotechnology 2023;39(4):1804-1814
In order to develop a transgenic zebrafish line with green fluorescent protein (enhanced green fluorescent protein, EGFP) expressed specifically in muscle and heart, the recombinant expression vector constructed using the zebrafish ttn.2 gene promoter fragment and EGFP gene coding sequence and the capped mRNA of Tol2 transposase were co-injected into the zebrafish 1-cell stage embryos. The stable genetic Tg (ttn.2: EGFP) transgenic zebrafish line was successfully developed by fluorescence detection, followed by genetic hybridization screening and molecular identification. Fluorescence signals and whole-mount in situ hybridization showed that EGFP expression was located in muscle and heart, the specificity of which was consistent with the expression of ttn.2 mRNA. Inverse PCR showed that EGFP was integrated into chromosomes 4 and 11 of zebrafish in No. 33 transgenic line, while integrated into chromosome 1 in No. 34 transgenic line. The successful construction of this fluorescent transgenic zebrafish line, Tg (ttn.2: EGFP), laid a foundation for the research of muscle and heart development and related diseases. In addition, the transgenic zebrafish lines with strong green fluorescence can also be used as a new ornamental fish.
Animals
;
Zebrafish/genetics*
;
Animals, Genetically Modified/genetics*
;
Green Fluorescent Proteins/metabolism*
;
Zebrafish Proteins/genetics*
;
Promoter Regions, Genetic
6.Knockout fth1b affects early mineralization of zebrafish pharyngeal teeth.
Chun-Yan ZHOU ; Xue-Dan ZHENG ; De-Qin YANG
West China Journal of Stomatology 2021;39(1):32-37
OBJECTIVES:
A study was conducted to explore the expression pattern and function of ferritin heavy polypeptide gene (fth1b) in zebrafish pharyngeal teeth development and lay the foundation for subsequent research on teeth development and mineralization.
METHODS:
The zebrafish embryos were harvested at 56, 72, 96, and 120 h after fertilization. The expression of fth1b in zebrafish pharyngeal teeth development was detected by whole embryo
RESULTS:
The expression pattern of fth1b gene was very similar to that of the known zebrafish pharyngeal teeth marker dlx2b and was specifically expressed in the zebrafish pharyngeal teeth during development. After the specific knockout of the gene fth1b, the earliest gene that can be detect in zebrafish pharyngeal teeth-pitx2 was expressed normally during early development. The dlx2b expression was not significantly different from that of wild type zebrafish, but the mineralization of pharyngeal teeth in the mutant was weaker than that of wild type zebrafish.
CONCLUSIONS
The gene fth1b is specifically expressed in zebrafish pharyngeal teeth and acts on their early mineralization.
Animals
;
In Situ Hybridization
;
Odontogenesis
;
Pharynx
;
Tooth
;
Zebrafish/genetics*
7.Role of ATP6V1H gene in bone metabolism.
Jin-Jin MA ; Jun YING ; Xiao-Hong DUAN ; Lu-Wei XIAO ; Hong-Ting JIN ; Jian-Ying FENG
China Journal of Orthopaedics and Traumatology 2021;34(3):265-268
Osteoporosis is one of the common clinical orthopedic diseases, which can lead to a variety of complications. There are many pathogenic factors in this disease. The latest research found that ATP6V1H is a new gene leading to the occurrence of osteoporosis, and it is likely to become a new target for the future drug treatment of osteoporosis.This paper introduces the biological structure and characteristics of H subunit, summed up the human body caused by loss of ATP6V1H and animal models such as zebrafish, mice bone loss and osteoporosis symptom such as related research reports of the loss, from osteoclast, osteoblast and marrow stromal cell level and the connection between the various subunits further expounds the H subunit regulate bone dynamic balance of mechanism, to explore ATP6V1H in bone developmentand bone related diseases has laid a solid foundation, also provide new ideas for clinical treatment of osteoporosis.
Animals
;
Bone and Bones
;
Mice
;
Osteoblasts
;
Osteoclasts
;
Osteoporosis/genetics*
;
Zebrafish
8.Hepatotoxicity and mechanism of Rhododendri Mollis Flos based on zebrafish model.
Mei-Lin CHEN ; Zhi-Qi LI ; Qi-Qi FAN ; Si-Min GUO ; Qiong CAI ; Rui-Chao LIN ; Jia-Rui WU ; Chong-Jun ZHAO
China Journal of Chinese Materia Medica 2023;48(1):140-147
This study used the zebrafish model to explore the hepatotoxicity of Rhododendri Mollis Flos(RMF). The mortality was calculated according to the number of the survival of zebrafish larvae 4 days after fertilization under different concentration of RMF, and the dose-toxicity curve was fitted to preliminarily evaluate the toxicity of RMF. The liver phenotypes under the sublethal concentration of RMF in the treatment group and the blank control group were observed by hematoxylin-eosin(HE) staining and acridine orange(AO) staining. Meanwhile, the activities of alanine aminotransferase(ALT) and aspartate aminotransferase(AST) were determined to confirm the hepatotoxicity of RMF. Real-time quantitative polymerase chain reaction(real-time PCR) and Western blot were used to determine the expressions of genes and proteins in zebrafish larvae. Gas chromatography time-of-flight mass spectrometry(GC-TOF-MS) was used to conduct untargeted metabolomics testing to explore the mechanism. The results showed that the toxicity of RMF to zebrafish larvae was dose-dependent, with 1 100 μg·mL~(-1) of the absolute lethal concentration and 448 μg·mL~(-1) of sublethal concentration. The hepatocyte apoptosis and degeneration appeared in the zebrafish larvae under the sublethal concentration of RMF. The content of ALT and AST in zebrafish larvae at the end of the experiment was significantly increased in a dose-dependent manner. Under the sublethal concentration, the expressions of genes and proteins related to apoptosis in zebrafish larvae were significantly increased as compared with the blank control group. The results of untargeted metabolomics showed that the important metabolites related to the he-patotoxicity of RMF were mainly enriched in alanine, aspartic acid, glutamic acid, and other pathways. In conclusion, it is inferred that RMF has certain hepatotoxicity to zebrafish larvae, and its mechanism may be related to apoptosis.
Animals
;
Zebrafish/genetics*
;
Apoptosis
;
Larva
;
Chemical and Drug Induced Liver Injury
9.Establishment of a microtubule-fluorescent fusion protein mosaically labeled zebrafish motor neuron system.
Fang YUAN ; Pei-Pei QIAN ; Xin WANG ; Jia-Jing SHENG ; Dong LIU ; Jie GONG
Acta Physiologica Sinica 2022;74(3):411-418
Motor neurons are an important type of neurons that control movement. The transgenic fluorescent protein (FP)-labeled motor neurons of zebrafish line is disadvantageous for studying the morphogenesis of motor neurons. For example, the individual motor neuron is indistinguishable in this transgenic line due to the high density of the motor neurons and the interlaced synapses. In order to optimize the in vivo imaging methods for the analysis of motor neurons, the present study was aimed to establish a microtubule-fluorescent fusion protein mosaic system that can label motor neurons in zebrafish. Firstly, the promotor of mnx1, which was highly expressed in the spinal cord motor neurons, was subcloned into pDestTol2pA2 construct combined with the GFP-α-Tubulin fusion protein sequence by Gateway cloning technique. Then the recombinant constructs were co-injected with transposase mRNA into the 4-8 cell zebrafish embryos. Confocal imaging analysis was performed at 72 hours post fertilization (hpf). The results showed that the GFP fusion protein was expressed in three different types of motor neurons, and individual motor neurons were mosaically labeled. Further, the present study analyzed the correlation between the injection dose and the number and distribution of the mosaically labeled neurons. Fifteen nanograms of the recombinant constructs were suggested as an appropriate injection dose. Also, the defects of the motor neuron caused by the down-regulation of insm1a and kif15 were verified with this system. These results indicate that our novel microtubule-fluorescent fusion protein mosaic system can efficiently label motor neurons in zebrafish, which provides a more effective model for exploring the development and morphogenesis of motor neurons. It may also help to decipher the mechanisms underlying motor neuron disease and can be potentially utilized in drug screening.
Animals
;
Animals, Genetically Modified
;
Green Fluorescent Proteins/pharmacology*
;
Microtubules/metabolism*
;
Motor Neurons
;
Zebrafish/genetics*
;
Zebrafish Proteins/genetics*