1.Progress and application prospects of glutamine synthase in plants.
Wanjun FENG ; Guofang XING ; Xulong NIU ; Chen DOU ; Yuanhuai HAN
Chinese Journal of Biotechnology 2015;31(9):1301-1312
Nitrogen is one of the most important nutrient elements for plants and a major limiting factor in plant growth and crop productivity. Glutamine synthase (GS) is a key enzyme involved in the nitrogen assimilation and recycling in plants. So far, members of the glutamine synthase gene family have been characterized in many plants such as Arabidopsis, rice, wheat, and maize. Reports show that GS are involved in the growth and development of plants, in particular its role in seed production. However, the outcome has generally been inconsistent, which are probably derived from the transcriptional and post-translational regulation of GS genes. In this review, we outlined studies on GS gene classification, QTL mapping, the relationship between GS genes and plant growth with nitrogen and the distribution characters, the biological functions of GS genes, as well as expression control at different regulation levels. In addition, we summarized the application prospects of glutamine synthetase genes in enhancing plant growth and yield by improving the nitrogen use efficiency. The prospects were presented on the improvement of nitrogen utility efficiency in crops and plant nitrogen status diagnosis on the basis of glutamine synthase gene regulation.
Arabidopsis
;
Genes, Plant
;
Glutamate-Ammonia Ligase
;
genetics
;
Nitrogen
;
metabolism
;
Oryza
;
Plants
;
enzymology
;
genetics
;
Triticum
;
Zea mays
2.Isolation of the capsid protein gene of maize dwarf mosaic virus and its transformation in maize.
Xiao-Hong LIU ; Hong-Wei ZHANG ; Xin LIU ; Xin-Jie LIU ; Zhen-Bo TAN ; Ting-Zhao RONG
Chinese Journal of Biotechnology 2005;21(1):144-148
The MDMV (Maize Dwarf Mosaic Virus, MDMV) CP (Coat Protein, CP) gene was cloned by RT-PCR method and introduced into the embryonic calli derived from immature embryos of elite inbred 18-599hong and 18-599bai via particle bombardment. Bombarded calli were selected on selection medium containing 5-10 mg/L (PPT) Bialaphos. From resistant calli, 79 plantlets were regenerated. 18 of 79 were grown and harvested. The results of Southern blotting and PCR analysis demonstrated that MDMV CP have been integrated into the genome of the transgenic plants. PCR-positive progeny plants were artificially inoculated with MDMV strain B, and the average chlorosis of the functional leaves of each plant was investigated. The typical symptoms were observed from the leaves of the control inbreds. while, the presence of the MDMV CP gene provided resistance to inoculation with MDMV strain B.
Capsid Proteins
;
genetics
;
Cloning, Molecular
;
Mosaic Viruses
;
genetics
;
Plant Diseases
;
genetics
;
virology
;
Plants, Genetically Modified
;
Transfection
;
Zea mays
;
genetics
;
virology
3.Transgenic maize plants with low copy number of foreign genes were produced with maize Ubi-1 promoter.
Zi-Qin XU ; Li-Gui GONG ; Xuan HUANG ; Yong-Yan ZHANG ; Li-Mei GAO
Chinese Journal of Biotechnology 2004;20(1):120-125
Direct DNA delivery procedures (include biolistics method) often resulted in multiple copies of the transgenes in transformants and certain copies of them were rearranged. Integration of multiple copies of the introduced genes was the main reason of gene silencing which meant inhibition or loss of foreign gene expression in filial generations of transformants. In the present work, we compared the influences of maize Ubi-1 promoter and other promoters on copy number of transgenes in maize transgenic plants. Immature embryos from Zea mays L. plants of sib-pollinated of A188 x H99 genotype were used as initial materials. Type- I embryonic calluses derived from preculture of immature embryos were treated on N6 medium containing 0.6 mol/L sucrose for 3 approximately 5 hours and transformed via particle bombardment with PDS1000/He delivery system (Bio-Rad). Bombarded calluses were treated with hyperosmotic N6 medium for 16 approximately 20 hours continuously. Then the cultures were transferred onto normal N6 medium and incubated at 26 degrees C in dark for two weeks and subsequently selected on N6 medium supplemented with 2 or 5 mg/L phosphinothricin (PPT) but without casamino acid for another two weeks. The calluses after selective culture were transferred onto hormone-free MS medium containing 2 or 5 mg/L PPT but without casamino acid, and incubated at 24 degrees C under 16 h illumination for plant regeneration. Regenerated plantlets over 2 cm in height were transferred to Magenta box containing 1/2 hormone-free MS medium. Plantlets over 8 cm in height were transplanted to soil. After growing for one week in greenhouse, the plants were sprayed with 250 mg/L PPT solution. Fertile transgenic maize plants were regenerated and confirmed by Southern blotting and histochemical localization of beta-glucuronidase (GUS) activity. Relations between promoter and copy number of transgenes in transformants were analyzed. Maize transgenic plants possessing an intact copy and another incomplete copy of beta-glucuronidase gene (gus) were obtained in case gus gene under the control of maize Ubi-1 promoter (pUbi:GUS). Simultaneously the co-transformed phosphinothricin acetyltransferase gene (bar) controlled by CaMV 35S promoter in another plasmid (p35S:BAR) also existed with only one copy. When pDB1 and (pUbi:in2) were cobombarded, the regenerated transgenic maize plant exhibited with only one copy of in2 gene too. It suggested that the copy number of transgenes in maize transformants was low if the transgenes controlled by maize Ubi-1 promoter. The possible reason might be that the foreign genes were integrated site-specifically via homologous recombination between Ubi-1 promoter and its endogenous sequences in maize genome, and two cotransformed plasmids had reconstructed as one intact molecule before integrating into maize chromosome. On the contrary, if p35S:BAR was cobom-barded with plasmid pAct:In1 containing rice Act-1 promoter (without maize Ubi-1 promoter), the transgenic maize plants had 4 approximately 8 copies of bar gene. These results reflected that utilization of self gene promoter could reduce the copy number of the transgenes in transgenic plants of certain species itself and avoid the occurrence of gene silencing. T2 seeds have been harvested.
Gene Dosage
;
Plant Proteins
;
genetics
;
Plants, Genetically Modified
;
genetics
;
Promoter Regions, Genetic
;
Ubiquitin C
;
genetics
;
Zea mays
;
genetics
4.Optimized condition for protoplast isolation from maize, wheat and rice leaves.
He SUN ; Zhihong LANG ; Li ZHU ; Dafang HUANG
Chinese Journal of Biotechnology 2013;29(2):224-234
Maize (Zea mays L.), wheat (Triticum aestivum L.) and rice (Oryza sativa L.) are three staple crops and accordingly it is very meaningful to optimize the condition of their protoplasts isolation. The concentration of the enzyme, the time of isolation and centrifugal force in protoplast isolation were investigated to find their effects on protoplast yield and viability using leaves of maize (Zong 3), wheat (Chinese Spring) and rice (Nipponbare). The results show that the concentration of the enzyme and the time of isolation affected the protoplast yield significantly. Although the yield of protoplast was increased with high concentration of enzyme and long incubated time, it led to too much cells breakdown. The orthogonal experimental design results show that the best condition of maize protoplast isolation was Cellulase R-10 1.5%, Macerozyme R-10 0.5%, 50 r/min 7 h, 100 x g 2 min and the protoplasts yield was 7x106 cells/g fresh weight (FW); the best condition of wheat protoplast isolation was Cellulase R-10 1.5%, Macerozyme R-10 0.5%, 50 r/min 5 h, 100 x g 2 min and the protoplasts yield was 6 x 10(6) cells/g FW; the best condition of rice protoplast isolation was Cellulase R-10 2.0%, Macerozyme R-10 0.7%, 50 r/min 7 h, 1 000 x g 2 min and the protoplasts yield was 6x10(6) cells/g FW. The vitalities were more than 90% using fluorescein diacetate staining method. 50%-80% transformation efficiency was obtained when protoplasts were transformed by green fluorescent protein using PEG-Ca2+ method.
Cell Culture Techniques
;
methods
;
Oryza
;
chemistry
;
genetics
;
Plant Leaves
;
enzymology
;
Protoplasts
;
cytology
;
Triticum
;
chemistry
;
genetics
;
Zea mays
;
cytology
;
genetics
5.Introduction of a non-host gene Rxo1 cloned from maize resistant to rice bacterial leaf streak into rice varieties.
Xue-Wen XIE ; Jing YU ; Jian-Long XU ; Yong-Li ZHOU ; Zhi-Kang LI
Chinese Journal of Biotechnology 2007;23(4):607-611
Rice bacterial leaf streak,caused by Xanthomonas oryzae pv. oryzicola is a destructive bacterial disease in China. Single-gene resistance to X. oryzae pv. oryzicola has not been found in rice germplasm. A cloned non-host gene from maize with resistance to bacterial leaf streak, Rxo1, was transferred into four Chinese rice varieties through an Agrobacterium-mediated system, including Zhonghua11, 9804, C418 and Minghui86. PCR and Southern analysis of the transgenic plants revealed the integration of the Rxo1 gene into the rice genomes. The integrated Rxo1 was stably inherited, and segregated in a 3:1 (Resistance:Susceptible) ratio in the selfed T1 generations derived from some T0 plants, indicating that Rxo1 inherited as a dominate gene in rice. Transgenic T0 plants and PCR-positive T1 plants were resistant to X. oryzae pv. oryzicola on the basis of artificial inoculation.
Bacterial Proteins
;
genetics
;
metabolism
;
Genes, Plant
;
genetics
;
Oryza
;
genetics
;
Plant Diseases
;
genetics
;
microbiology
;
Plants, Genetically Modified
;
genetics
;
Rhizobium
;
genetics
;
Transformation, Genetic
;
Xanthomonas
;
genetics
;
Zea mays
;
genetics
;
microbiology
6.Review of transgenic crop breeding in China.
Chinese Journal of Biotechnology 2015;31(6):892-900
The development history and fundamental experience of transgenic crops (Genetically modified crops) breeding in China for near 30 years were reviewed. It was illustrated that a scientific research, development and industrialization system of transgenic crops including gene discovery, transformation, variety breeding, commercialization, application and biosafety assessment has been initially established which was few in number in the world. The research innovative capacity of transgenic cotton, rice and corn has been lifted. The research features as well as relative advantages have been initially formed. The problems and challenges of transgenic crop development were discussed. In addition, three suggestions of promoting commercialization, speeding up implementation of the Major National Project of GM Crops, and enhancing science communication were made.
China
;
Crops, Agricultural
;
genetics
;
History, 20th Century
;
History, 21st Century
;
Oryza
;
Plant Breeding
;
history
;
Plants, Genetically Modified
;
Zea mays
7.Development of transgenic maize with anti-rough dwarf virus artificial miRNA vector and their disease resistance.
Ning XUAN ; Chuanzhi ZHAO ; Zhenying PENG ; Gao CHEN ; Fei BIAN ; Mingzheng LIAN ; Guoxia LIU ; Xingjun WANG ; Yuping BI
Chinese Journal of Biotechnology 2015;31(9):1375-1386
Maize is one of the most important food crops. Rice black-streaked dwarf virus is a maize rough dwarf disease pathogen. The occurrence and transmission of maize rough dwarf disease brings great damage to maize production. The technology of using artificial miRNA to build antiviral plant has been proven effective in a variety of plants. However, such trials in maize have not been reported. We designed primers based on the sequence of maize zea-miR159a precursor and sequence of function protein genes and silencing RBSDV coding genes in RBSDV genome. We constructed amiRNA (artificial miRNA) gene for silencing RBSDV coding gene and gene silencing suppressor. We constructed pCAMBIA3301-121-amiRNA plant expression vector for transforming maize inbred lines Z31 by using agrobacterium mediated method. After molecular analysis of transgenic maize, homozygous lines with high miRNA expression were selected by molecular detection for a subsequent natural infection experiment. We studied the severity of maize rough dwarf disease according to a grading standard (grade 0 to 4). The experiment results showed that the disease resistance of transgenic homozygous maize with the anti-rough dwarf virus amiRNA vector was better than that of wild type. Among the transgenic maize, S6-miR159 transgenic maize had high disease resistance. It is feasible to create new maize variety by the use of artificial miRNA.
Disease Resistance
;
genetics
;
Gene Silencing
;
Genetic Vectors
;
MicroRNAs
;
genetics
;
Plant Diseases
;
genetics
;
virology
;
Plants, Genetically Modified
;
genetics
;
Reoviridae
;
pathogenicity
;
Zea mays
;
genetics
8.Genetically engineered corn rootworm resistance: potential for reduction of human health effects from pesticides.
Frederick W OEHME ; John A PICKRELL
Biomedical and Environmental Sciences 2003;16(1):17-28
OBJECTIVE AND METHODSInsecticide use, grower preferences regarding genetically engineered (GE) corn resistant to corn rootworm (CRW), and the health effects of using various CRW insecticides (organophosphates, pyrethroids, fipronil and carbamates) are reviewed for current and future farm practices.
RESULTSPest damage to corn has been reduced only one-third by insecticide applications. Health costs from insecticide use appear significant, but costs attributable to CRW control are not quantifiable from available data. Methods reducing health-related costs of insecticide-based CRW control should be evaluated. As a first step, organophosphate insecticide use has been reduced as they have high acute toxicity and risk of long-term neurological consequences. A second step is to use agents which more specifically target the CRW.
CONCLUSIONWhereas current insecticides may be poisonous to many species of insects, birds, mammals and humans, a protein derived from Bacillus thurigiensis and produced in plants via genetic modification can target the specific insect of CRW (Coleoptra), sparing other insect and non-insect species from injury.
Animals ; Consumer Product Safety ; Food, Genetically Modified ; Insecta ; Insecticide Resistance ; Insecticides ; adverse effects ; Pest Control, Biological ; economics ; methods ; Plant Roots ; Plants, Genetically Modified ; Zea mays ; genetics ; growth & development
9.Molecular identity of Crocus sativus and its misused substitutes by ITS sequence.
Jian CHE ; Lin TANG ; Yan-jun LIU ; Wei HE ; Fang CHEN
China Journal of Chinese Materia Medica 2007;32(8):668-671
OBJECTIVETo find the patterns of the rDNA ITS sequence variation of Crocus sativus, Chrysanthemum chanetii, Nelumbo nucifera, Zea mays and Garthamus tinctorius and to establish the molecular biological method for the identification of C. sativus and the others.
METHODAfter the total DNA of Crocus sativus, C. vernus-w and C. vernus-p were extracted, the ITS sequence was amplified by PCR with universal primer of ITS and PCR product was sequenced after purification and cloning. The ITS sequences of Chrysanthemrnum chanetii, Nelumbo nucifera, Zea mays and Garthamus tinctorius were obtained from GenBank.
RESULTThe complete ITS sequence of Crocus sativus, C. vernus-w and C. vernus-p, including ITSI rDNA, 5.8S rDNA, ITS2 rDNA were measured. The GenBank accession No. was DQ094185, DQ224363 and DQ224364 respectively. The similarity of ITS sequence between C. sativus and the two garden species of C. vernus was above 91%; the identity was 99.84% between C. vernus-w and C. vernus-p. The range of diversity between C. sativus and other herbs was above 46% based on ITS1 and above 41% based on ITS2.
CONCLUSIONC. sativus can be distinguished from misused substitutes by the ITS sequence. The ITS sequence is an available molecular marker for identification of the C. sativus.
Chrysanthemum ; genetics ; Crocus ; genetics ; DNA, Plant ; chemistry ; genetics ; DNA, Ribosomal ; chemistry ; genetics ; DNA, Ribosomal Spacer ; chemistry ; genetics ; Genetic Variation ; Molecular Sequence Data ; Nelumbo ; genetics ; Plants, Medicinal ; genetics ; Polymerase Chain Reaction ; Sequence Analysis, DNA ; Zea mays ; genetics
10.PlaD: A Transcriptomics Database for Plant Defense Responses to Pathogens, Providing New Insights into Plant Immune System.
Huan QI ; Zhenhong JIANG ; Kang ZHANG ; Shiping YANG ; Fei HE ; Ziding ZHANG
Genomics, Proteomics & Bioinformatics 2018;16(4):283-293
High-throughput transcriptomics technologies have been widely used to study plant transcriptional reprogramming during the process of plant defense responses, and a large quantity of gene expression data have been accumulated in public repositories. However, utilization of these data is often hampered by the lack of standard metadata annotation. In this study, we curated 2444 public pathogenesis-related gene expression samples from the model plant Arabidopsis and three major crops (maize, rice, and wheat). We organized the data into a user-friendly database termed as PlaD. Currently, PlaD contains three key features. First, it provides large-scale curated data related to plant defense responses, including gene expression and gene functional annotation data. Second, it provides the visualization of condition-specific expression profiles. Third, it allows users to search co-regulated genes under the infections of various pathogens. Using PlaD, we conducted a large-scale transcriptome analysis to explore the global landscape of gene expression in the curated data. We found that only a small fraction of genes were differentially expressed under multiple conditions, which might be explained by their tendency of having more network connections and shorter network distances in gene networks. Collectively, we hope that PlaD can serve as an important and comprehensive knowledgebase to the community of plant sciences, providing insightful clues to better understand the molecular mechanisms underlying plant immune responses. PlaD is freely available at http://systbio.cau.edu.cn/plad/index.php or http://zzdlab.com/plad/index.php.
Arabidopsis
;
genetics
;
Databases, Genetic
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
Gene Regulatory Networks
;
Genes, Plant
;
Host-Pathogen Interactions
;
genetics
;
Oryza
;
genetics
;
Plant Immunity
;
genetics
;
Plants
;
genetics
;
microbiology
;
Transcriptome
;
genetics
;
Triticum
;
genetics
;
User-Computer Interface
;
Zea mays
;
genetics