1.Optimization of fermentation conditions in shake flask of JA20-1, a VOCs-producing biocontrol bacterium and evaluation of its biocontrol effect against Botrytis cinerea of ginseng.
Yu-Ze ZHANG ; Yan-Cong HU ; Xiu-Xiu WANG ; Cong ZHANG ; Zhong-Hua QU ; Bao-Hui LU ; Xue WANG ; Jie GAO
China Journal of Chinese Materia Medica 2025;50(7):1748-1757
Bacillus mycoides JA20-1 was screened and identified as a biocontrol bacterium with a high capacity for producing volatile organic compounds(VOCs) in the laboratory. This strain had significant inhibitory effects on various postharvest disease pathogens in crops, such as Botrytis cinerea, as well as soil-borne disease pathogens in ginseng, such as Sclerotinia ginseng. In order to accelerate its industrialization process, in this study, single-factor experiments and response surface optimization methods were used. The fermentation medium and fermentation conditions in the shake flask of strain JA20-1 were systematically optimized by using cell production volume as the response variable. Meanwhile, the biocontrol effect of JA20-1 on B. cinerea of ginseng during the storage period was evaluated by using the method of fumigation in a dry dish in vitro. The results indicated that the optimal fermentation medium formulation for strain JA20-1 was as follows: 1% yeast paste, 1% soluble starch, 0.25% K_2HPO_4·3H_2O, and 0.2% NaCl. The optimal fermentation conditions in the shake flask were vaccination size of 3%, culture volume of 50 mL in a 250 mL Erlenmeyer flask, pH of 6.2, fermentation temperature of 34 ℃, shaking speed of 180 r·min~(-1), and incubation time of 18 hours. The bacteria count in the fermentation broth under these conditions reached 2.17 × 10~8 CFU·mL~(-1), which was 6.58 times higher than before. The average control efficacy of the fermentation broth on Botrytis cinerea of ginseng under in vitro fumigation reached 61.70% and 84.04% respectively, when 20 mL and 30 mL per dish were used. The research provided theoretical support and technical foundation for the development and utilization of Bacillus mycoides JA20-1 and the biocontrol of soil-borne diseases in ginseng and postharvest diseases in crops.
Botrytis/drug effects*
;
Fermentation
;
Panax/microbiology*
;
Plant Diseases/prevention & control*
;
Volatile Organic Compounds/metabolism*
;
Bacillus/physiology*
;
Pest Control, Biological/methods*
;
Biological Control Agents/metabolism*
;
Culture Media/chemistry*
2.A machine learning model for predicting abnormal liver function induced by a Chinese herbal medicine preparation (Zhengqing Fengtongning) in patients with rheumatoid arthritis based on real-world study.
Ze YU ; Fang KOU ; Ya GAO ; Fei GAO ; Chun-Ming LYU ; Hai WEI
Journal of Integrative Medicine 2025;23(1):25-35
OBJECTIVE:
Rheumatoid arthritis (RA) is a systemic autoimmune disease that affects the small joints of the whole body and degrades the patients' quality of life. Zhengqing Fengtongning (ZF) is a traditional Chinese medicine preparation used to treat RA. ZF may cause liver injury. In this study, we aimed to develop a prediction model for abnormal liver function caused by ZF.
METHODS:
This retrospective study collected data from multiple centers from January 2018 to April 2023. Abnormal liver function was set as the target variable according to the alanine transaminase (ALT) level. Features were screened through univariate analysis and sequential forward selection for modeling. Ten machine learning and deep learning models were compared to find the model that most effectively predicted liver function from the available data.
RESULTS:
This study included 1,913 eligible patients. The LightGBM model exhibited the best performance (accuracy = 0.96) out of the 10 learning models. The predictive metrics of the LightGBM model were as follows: precision = 0.99, recall rate = 0.97, F1_score = 0.98, area under the curve (AUC) = 0.98, sensitivity = 0.97 and specificity = 0.85 for predicting ALT < 40 U/L; precision = 0.60, recall rate = 0.83, F1_score = 0.70, AUC = 0.98, sensitivity = 0.83 and specificity = 0.97 for predicting 40 ≤ ALT < 80 U/L; and precision = 0.83, recall rate = 0.63, F1_score = 0.71, AUC = 0.97, sensitivity = 0.63 and specificity = 1.00 for predicting ALT ≥ 80 U/L. ZF-induced abnormal liver function was found to be associated with high total cholesterol and triglyceride levels, the combination of TNF-α inhibitors, JAK inhibitors, methotrexate + nonsteroidal anti-inflammatory drugs, leflunomide, smoking, older age, and females in middle-age (45-65 years old).
CONCLUSION
This study developed a model for predicting ZF-induced abnormal liver function, which may help improve the safety of integrated administration of ZF and Western medicine. Please cite this article as: Yu Z, Kou F, Gao Y, Lyu CM, Gao F, Wei H. A machine learning model for predicting abnormal liver function induced by a Chinese herbal medicine preparation (Zhengqing Fengtongning) in patients with rheumatoid arthritis based on real-world study. J Integr Med. 2025; 23(1): 25-35.
Humans
;
Arthritis, Rheumatoid/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Female
;
Middle Aged
;
Male
;
Retrospective Studies
;
Machine Learning
;
Adult
;
Aged
;
Liver/physiopathology*
;
Alanine Transaminase/blood*
4.Antipyretic and anti-inflammatory effects and quality evaluation of a new type of Lonicera Japonicae Flos granule raw decoction piece
Zhi-jun GUO ; Meng-meng HOU ; Dan GAO ; Yu-han WU ; Ze-min YANG ; Jia-lu WANG ; Bo GAO ; Xi-wen LI
Acta Pharmaceutica Sinica 2024;59(7):2087-2097
Traditional decoction pieces have low efficiency, poor batch-to-batch consistency, and irregular physical form, making it difficult to meet the demands of modern automated production and precise and rapid clinical blending. Therefore, this study aims to develop a new type of granular drinking tablet to meet the demand for high-quality development in the traditional Chinese medicine industry. In the current study, the differences and similarities between the new Lonicerae Japonicae Flos (LJF) granular drinking tablets and the traditional ones were evaluated based on the flowability, the paste rate of the standard soup, the characterization fingerprint, the degree of pasting, the content of active ingredients, the transfer rate, and its traditional antipyretic and anti-inflammatory efficacy, using the traditional
5.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
6.Low-dose Radiation Therapy for Osteoarthritis
Guo-Rong MA ; Yong-Ze YANG ; Xin MENG ; Yu-Ting GAO ; Shu-Zhi LI ; Hong-Zhang GUO ; Xiao-Dong JIN
Progress in Biochemistry and Biophysics 2024;51(6):1382-1392
Osteoarthritis (OA) is a chronic degenerative joint disease and the most common type of arthritis. It involves almost any joint and can lead to chronic pain and disability. In the late 19th century, Roentgen discovered X-rays, and then began to use radiotherapy to treat tumors. In the 1980s, Luckey thought that low-level radiation (LDRT) might be beneficial to biology, and it was gradually applied to the treatment of some diseases. This paper introduces the epidemiology, risk factors, clinical manifestations and treatment methods of OA, points out that the cartilage injury and the important effect of synovial inflammation in the pathogenesis of OA, namely when the homeostasis of articular cartilage are destroyed, synthetic metabolism and catabolism imbalances, cartilage cells damaged their breakdown products consumed by synovial cells. Synovial cells and synovial macrophages secrete proinflammatory cytokines, metalloproteinases and proteolytic enzymes, leading to cartilage matrix degradation and chondrocyte damage, which aggravates synovial inflammation and cartilage damage, forming a vicious cycle. The possible mechanism and clinical research progress of LDRT in alleviating OA are discussed. LDRT can regulate inflammatory response, inhibit the production of pro-inflammatory cytokines, and promote the production of anti-inflammatory cytokines, thereby achieving anti-inflammatory effect. Studies have shown that after irradiation, the expression of inducible nitric oxide synthase (iNOS) was decreased, the release of reactive oxygen species (ROS) and the production of superoxide were inhibited, the anti-inflammatory phenotype of macrophages was differentiated from M1 to M2, the inflammatory CD8+ T cells were transformed into CD4+ T cells, and the number of dendritic cells (DC) was significantly reduced. LDRT inhibit the production of proinflammatory factors in leukocytes, reduce their recruitment and adhesion, and down-regulate the expression levels of cell adhesion molecules such as selectin, intercellular adhesion molecule (ICAM) and vascular endothelial cell adhesion molecule (VCAM). LDRT can regulate endothelial cells, stimulate endothelial cells to produce a large amount of TGF-β1, reduce the adhesion of endothelial cells to peripheral blood mononuclear cells (PBMC), and contribute to the anti-inflammatory effect of LDRT. It also exerted anti-inflammatory effects by regulating mitochondrial growth differentiation factor 15 (GDF15). After low-level radiation, the MMP-13 (matrix metalloproteinases-13) and the ADAMTS5 (recombinant a disintegrin and metalloproteinase with thrombospondin-5) decreased, the Col2a1 (collagen type 2) increased in chondrocytes. In the existing clinical studies, most patients can achieve relief of joint pain and recovery of joint mobility after irradiation, and the patients have good feedback on the efficacy. The adverse reactions (acute reactions and carcinogenic risks) caused by LDRT in the treatment of OA are also discussed. During the treatment of OA, a few patients have symptoms such as redness, dryness or itching at the joint skin, and the symptoms are mild and do not require further treatment. Patients are thus able to tolerate more frequent and longer doses of radiotherapy. In general, LDRT itself has the advantages of non-invasive, less adverse reactions, and shows the effect of pain relief and movement improvement in the treatment of OA. Therefore, LDRT has a broad application prospect in the treatment of OA.
7.Prospectives of nucleic acid vaccine technology platform in preventive vaccine development
Xuanyi WANG ; Bin WANG ; Sidong XIONG ; Xiaoming GAO ; Yucai PENG ; Xia JIN ; Tao ZHU ; Bo YING ; Wei CUN ; Chunlai JIANG ; Jiyun YU ; Ze CHEN ; Jianjun CHEN ; Chunlin XIN
Chinese Journal of Microbiology and Immunology 2024;44(7):565-572
In November 2023, the seventh National Nucleic Acid Vaccine Conference was held to deeply discuss the immune mechanism, safety risks, advantages, and disadvantages of nucleic acid vaccines, and review the safety and effectiveness of COVID-19 vaccines developed by nucleic acid vaccine technology. Some prospectives were formed in the meeting that in the post-pandemic era, nucleic acid vaccine technology will play a role in the following areas: dealing with pathogens that are difficult to be prevented by traditional vaccines, promoting the upgrading of traditional live attenuated vaccines, contributing to the development of multivalent and combined vaccines, and rapid response to emerging and re-emerging infectious diseases. These views point out the direction for the future development of nucleic acid vaccine technology.
8.Research progress on mRNA pulmonary delivery systems
Ze-hong CHEN ; Xin-yu ZHANG ; Hao-nan XING ; Mei LU ; Fan MENG ; Jing-ru LI ; Xiu-li GAO ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2024;59(11):3074-3084
As a major global public health problem, pulmonary diseases threaten human life and health while causing a huge economic burden. The messenger RNA (mRNA)-based inhalation preparation, which effectively targets pulmonary cells can overcome the problems of traditional therapy, such as high side effects, low pulmonary bioavailability, and difficulty in synthesizing target proteins
10.Cloning, expression analysis and enzyme activity verification of dihydroflavonol 4-reductase from Cistanche tubulosa (Schenk) Wight flower
Hai-ling QIU ; Fang-ming WANG ; Bo-wen GAO ; Xin-yu MI ; Ze-kun ZHANG ; Yu DU ; She-po SHI ; Peng-fei TU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2023;58(4):1079-1089
Dihydroflavonol 4-reductase (DFR) plays an essential role in the biosynthesis of anthocyanin and regulation of plant flower color. Based on the transcriptome data of

Result Analysis
Print
Save
E-mail