1.Optimization of fermentation conditions in shake flask of JA20-1, a VOCs-producing biocontrol bacterium and evaluation of its biocontrol effect against Botrytis cinerea of ginseng.
Yu-Ze ZHANG ; Yan-Cong HU ; Xiu-Xiu WANG ; Cong ZHANG ; Zhong-Hua QU ; Bao-Hui LU ; Xue WANG ; Jie GAO
China Journal of Chinese Materia Medica 2025;50(7):1748-1757
Bacillus mycoides JA20-1 was screened and identified as a biocontrol bacterium with a high capacity for producing volatile organic compounds(VOCs) in the laboratory. This strain had significant inhibitory effects on various postharvest disease pathogens in crops, such as Botrytis cinerea, as well as soil-borne disease pathogens in ginseng, such as Sclerotinia ginseng. In order to accelerate its industrialization process, in this study, single-factor experiments and response surface optimization methods were used. The fermentation medium and fermentation conditions in the shake flask of strain JA20-1 were systematically optimized by using cell production volume as the response variable. Meanwhile, the biocontrol effect of JA20-1 on B. cinerea of ginseng during the storage period was evaluated by using the method of fumigation in a dry dish in vitro. The results indicated that the optimal fermentation medium formulation for strain JA20-1 was as follows: 1% yeast paste, 1% soluble starch, 0.25% K_2HPO_4·3H_2O, and 0.2% NaCl. The optimal fermentation conditions in the shake flask were vaccination size of 3%, culture volume of 50 mL in a 250 mL Erlenmeyer flask, pH of 6.2, fermentation temperature of 34 ℃, shaking speed of 180 r·min~(-1), and incubation time of 18 hours. The bacteria count in the fermentation broth under these conditions reached 2.17 × 10~8 CFU·mL~(-1), which was 6.58 times higher than before. The average control efficacy of the fermentation broth on Botrytis cinerea of ginseng under in vitro fumigation reached 61.70% and 84.04% respectively, when 20 mL and 30 mL per dish were used. The research provided theoretical support and technical foundation for the development and utilization of Bacillus mycoides JA20-1 and the biocontrol of soil-borne diseases in ginseng and postharvest diseases in crops.
Botrytis/drug effects*
;
Fermentation
;
Panax/microbiology*
;
Plant Diseases/prevention & control*
;
Volatile Organic Compounds/metabolism*
;
Bacillus/physiology*
;
Pest Control, Biological/methods*
;
Biological Control Agents/metabolism*
;
Culture Media/chemistry*
2.Research on software development and smart manufacturing platform incorporating near-infrared spectroscopy for measuring traditional Chinese medicine manufacturing process.
Yan-Fei WU ; Hui XU ; Kai-Yi WANG ; Hui-Min FENG ; Xiao-Yi LIU ; Nan LI ; Zhi-Jian ZHONG ; Ze-Xiu ZHANG ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(9):2324-2333
Process analytical technology(PAT) is a key means for digital transformation and upgrading of the traditional Chinese medicine(TCM) manufacturing process, serving as an important guarantee for consistent and controllable TCM product quality. Near-infrared(NIR) spectroscopy has become the core technology for measuring the TCM manufacturing process. By incorporating NIR spectroscopy into PAT and starting from the construction of a smart platform for the TCM manufacturing process, this paper systematically described the development history and innovative application of the combination of NIR spectroscopy with chemometrics in measuring the TCM manufacturing process by the research team over the past two decades. Additionally, it explored the application of a validation method based on accuracy profile(AP) in the practice of NIR spectroscopy. Furthermore, the software development progress driven by NIR spectroscopy supported by modeling technology was analyzed, and the prospect of integrating NIR spectroscopy in smart factory control platforms was exemplified with the construction practices of related platforms. By integrating with the smart platform, NIR spectroscopy could improve production efficiency and guarantee product quality. Finally, the prospect of the smart platform application in measuring the TCM manufacturing process was projected. It is believed that the software development for NIR spectroscopy and the smart manufacturing platform will provide strong technical support for TCM digitalization and industrialization.
Spectroscopy, Near-Infrared/methods*
;
Drugs, Chinese Herbal/analysis*
;
Software
;
Medicine, Chinese Traditional
;
Quality Control
3.Antidepressant effects of Ziziphi Spinosae Semen extract on depressive-like behaviors in sleep deprivation rats based on integrated serum metabolomics and gut microbiota.
Liang-Lei SONG ; Ya-Yu SUN ; Ze-Jia NIU ; Jia-Ying LIU ; Xiang-Ping PEI ; Yan YAN ; Chen-Hui DU
China Journal of Chinese Materia Medica 2025;50(16):4510-4524
Based on serum metabolomics and gut microbiota technology, this study explores the effects and mechanisms of the water extract of Ziziphi Spinosae Semen(SZRW) and the petroleum ether extract of Ziziphi Spinosae Semen(SZRO) in improving depressive-like behaviors induced by sleep deprivation. A modified multi-platform water environment method was employed to establish a rat model of sleep deprivation. Depressive-like behaviors in rats were assessed through the sucrose preference test and forced swim test. The expression of barrier proteins, such as Occludin, in the colon was determined by immunofluorescence. UPLC-Q-Orbitrap MS was utilized to analyze the serum metabolic profiles of sleep-deprived rats, screen for differential metabolites, and analyze metabolic pathways. The diversity of the gut microbiota was detected using 16S rRNA gene sequencing. Spearman correlation coefficient analysis was conducted to assess the correlation between differential metabolites and gut microbiota. The results indicated that SZRO significantly increased the sucrose preference index and decreased the immobility time in the forced swim test in rats. A total of 34 differential metabolites were identified through serum metabolomics. SZRW and SZRO shared five metabolic pathways, including phenylalanine metabolism. SZRW uniquely featured taurine and hypotaurine metabolism, while SZRO uniquely featured linoleic acid metabolism and tyrosine metabolism. Correlation analysis revealed that SZRW could upregulate the abundance of Bilophila, promoting the production of indole-3-propionic acid and subsequently upregulating the expression levels of intestinal tight junction proteins such as ZO-1, Occludin, and Claudin-1. SZRO could indirectly influence metabolic pathways such as arginine metabolism and linoleic acid metabolism by upregulating the abundance of gut microbiota such as Coprococcus and Eubacterium species. Both SZRW and SZRO can regulate endogenous metabolism, including amino acids, energy, and lipids, alter the gut microbiota microecology, and improve depressive-like behaviors. SZRO demonstrated superior effects in regulating metabolic pathways and gut microbiota structure compared to SZRW. The findings of this study provide a scientific basis for elucidating the pharmacodynamic material basis of Ziziphi Spinosae Semen.
Animals
;
Rats
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Metabolomics
;
Drugs, Chinese Herbal/administration & dosage*
;
Depression/blood*
;
Rats, Sprague-Dawley
;
Sleep Deprivation/complications*
;
Ziziphus/chemistry*
;
Antidepressive Agents/administration & dosage*
;
Behavior, Animal/drug effects*
;
Humans
4.Cerebral oxygen metabolism and brain electrical activity of healthy full-term neonates in high-altitude areas:a multicenter clinical research protocol
Bi ZE ; Jin GAO ; Xiao-Fen ZHAO ; Yang-Fang LI ; Tie-Song ZHANG ; Xiao-Mei LIU ; Hui MAO ; Ming-Cai QIN ; Yi ZHANG ; Yong-Li YANG ; Chun-Ye HE ; Yan ZHAO ; Kun DU ; Lin LIU ; Wen-Hao ZHOU ; Chinese High Altitude Neonatal Medicine Alliance
Chinese Journal of Contemporary Pediatrics 2024;26(4):403-409
Further evidence is needed to explore the impact of high-altitude environments on the neurologic function of neonates.Non-invasive techniques such as cerebral near-infrared spectroscopy and amplitude-integrated electroencephalography can provide data on cerebral oxygenation and brain electrical activity.This study will conduct multiple cerebral near-infrared spectroscopy and amplitude-integrated electroencephalography monitoring sessions at various time points within the first 3 days postpartum for healthy full-term neonates at different altitudes.The obtained data on cerebral oxygenation and brain electrical activity will be compared between different altitudes,and corresponding reference ranges will be established.The study involves 6 participating centers in the Chinese High Altitude Neonatal Medicine Alliance,with altitude gradients divided into 4 categories:800 m,1 900 m,2 400 m,and 3 500 m,with an anticipated sample size of 170 neonates per altitude gradient.This multicenter prospective cohort study aims to provide evidence supporting the impact of high-altitude environments on early brain function and metabolism in neonates.[Chinese Journal of Contemporary Pediatrics,2024,26(4):403-409]
5.Effects of curcumol on iron death and epithelial-mesenchymal transition in hepatic stellate cells
Lei WANG ; Jin-Biao HUANG ; Yan-Qing HUANG ; Ze-Yu WANG ; Jia-Hui WANG ; Yang ZHENG ; Wei-Sheng LUO ; Tie-Jian ZHAO
The Chinese Journal of Clinical Pharmacology 2024;40(4):539-543
Objective To elucidate the effect of curcumol on hepatic stellate cell iron death and epithelial-mesenchymal transition(EMT),and to investigate the molecular mechanism of its anti-liver fibrosis effect.Methods A model of hepatic stellate cell activation was constructed using normal cultured hepatic stellate cells in vitro,and the cells were divided into blank group and experimental-L,-M,-H groups.The blank group was given DMEM complete culture solution for normal culture;the experimental-L,-M,-H groups were given DMEM complete culture solution containing 12.5,25.0 and 50.0 mg·L-1 curcumol for 48 h of intervention.The effects of curcumol on the proliferation of hepatic stellate cells was observed by CCK-8.The expression levels of glutathione peroxidase 4(GPX4)and solute carrier family 7 member 11(SLC7A11)were detected by Western blot.The expression levels of E-cadherin and N-cadherin were detected by immunofluorescence.Results The cell proliferation rates of the experimental-M,-H groups and blank group were(68.97±5.61)%,(61.91±4.40)%and(118.07±10.01)%;the relative expression levels of GPX4 were 0.37±0.04,0.28±0.03 and 0.58±0.05;the relative expression levels of SLC7A11 were 0.38±0.04,0.28±0.03 and 0.60±0.05;E-cadherin levels were 6.76±1.09,9.57±1.73 and 2.05±0.72;N-cadherin levels were 5.66±0.66,3.44±0.78 and 10.37±0.66.The differences of above indicators were statistically significant between the blank group and the experimental-M,-H groups(P<0.05,P<0.01).Conclusion Curcumol promotes iron death in hepatic stellate cells,thereby inhibiting hepatic stellate cell EMT,which may be its molecular mechanism to prevent and treat liver fibrosis.
6.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
7.Evaluation of Microsphere-based xMAP Test for gyrA Mutation Identification in Mycobacterium Tuberculosis.
Xi Chao OU ; Bing ZHAO ; Ze Xuan SONG ; Shao Jun PEI ; Sheng Fen WANG ; Wen Cong HE ; Chun Fa LIU ; Dong Xin LIU ; Rui Da XING ; Hui XIA ; Yan Lin ZHAO
Biomedical and Environmental Sciences 2023;36(4):384-387
8.Benchmark Dose Assessment for Coke Oven Emissions-Induced Mitochondrial DNA Copy Number Damage Effects.
Zhao Fan YAN ; Zhi Guang GU ; Ya Hui FAN ; Xin Ling LI ; Ze Ming NIU ; Xiao Ran DUAN ; Ali Manthar MALLAH ; Qiao ZHANG ; Yong Li YANG ; Wu YAO ; Wei WANG
Biomedical and Environmental Sciences 2023;36(6):490-500
OBJECTIVE:
The study aimed to estimate the benchmark dose (BMD) of coke oven emissions (COEs) exposure based on mitochondrial damage with the mitochondrial DNA copy number (mtDNAcn) as a biomarker.
METHODS:
A total of 782 subjects were recruited, including 238 controls and 544 exposed workers. The mtDNAcn of peripheral leukocytes was detected through the real-time fluorescence-based quantitative polymerase chain reaction. Three BMD approaches were used to calculate the BMD of COEs exposure based on the mitochondrial damage and its 95% confidence lower limit (BMDL).
RESULTS:
The mtDNAcn of the exposure group was lower than that of the control group (0.60 ± 0.29 vs. 1.03 ± 0.31; P < 0.001). A dose-response relationship was shown between the mtDNAcn damage and COEs. Using the Benchmark Dose Software, the occupational exposure limits (OELs) for COEs exposure in males was 0.00190 mg/m 3. The OELs for COEs exposure using the BBMD were 0.00170 mg/m 3 for the total population, 0.00158 mg/m 3 for males, and 0.00174 mg/m 3 for females. In possible risk obtained from animal studies (PROAST), the OELs of the total population, males, and females were 0.00184, 0.00178, and 0.00192 mg/m 3, respectively.
CONCLUSION
Based on our conservative estimate, the BMDL of mitochondrial damage caused by COEs is 0.002 mg/m 3. This value will provide a benchmark for determining possible OELs.
Male
;
Female
;
Animals
;
Coke
;
Polycyclic Aromatic Hydrocarbons
;
DNA Copy Number Variations
;
Benchmarking
;
Occupational Exposure/analysis*
;
DNA, Mitochondrial/genetics*
;
DNA Damage
9.Clinical characteristics and prognostic factors of patients with Philadelphia-negative myeloproliferative neoplasm accelerated/blast phase.
Xin YAN ; Tie Jun QIN ; Bing LI ; Shi Qiang QU ; Li Juan PAN ; Fu Hui LI ; Ning Ning LIU ; Zhi Jian XIAO ; Ze Feng XU
Chinese Journal of Hematology 2023;44(4):276-283
Objective: To evaluate the clinical characteristics and prognostic factors of patients with Philadelphia-negative myeloproliferative neoplasm-accelerated phase/blast phase (MPN-AP/BP) . Methods: A total of 67 patients with MPN-AP/BP were enrolled from February 2014 to December 2021 at the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences. Their clinical features and prognostic factors were analyzed retrospectively. Results: ① Sixty-seven patients with MPN-AP/BP with a median age of 60 (range, 33-75) years, including 31 males (46.3% ) and 36 females (53.7% ) , were analyzed. Forty-eight patients progressed from primary myelofibrosis (PMF) , and 19 progressed from other myeloproliferative neoplasms (MPNs) , which included polycythemia vera, essential thrombocythemia, and MPN unclassifiable. Patients who progressed from PMF had higher lactate dehydrogenase (LDH) levels than those who progressed from other MPNs (925.95 vs. 576.2 U/L, P=0.011) , and there were higher proportions of patients who progressed from PMF with splenomegaly (81.4% vs. 57.9% , P=0.05) , a myelofibrosis grade of ≥2 (93.6% vs. 63.2% , P=0.004) , and a shorter duration from diagnosis to the transformation to AP/BP (28.7 vs. 81 months, P=0.001) . ② JAK2V617F, CALR, and MPLW515 were detected in 41 (61.2% ) , 13 (19.4% ) , and 3 (4.5% ) patients, respectively, whereas 10 (14.9% ) patients did not have any driver mutations (triple-negative) . Other than driver mutations, the most frequently mutated genes were ASXL1 (42.2% , n=27) , SRSF2 (25% , n=16) , SETBP1 (22.6% , n=15) , TET2 (20.3% , n=13) , RUNX1 (20.3% , n=13) , and TP53 (17.2% , n=11) . The ASXL1 mutation was more enriched (51.1% vs. 21.1% , P=0.03) , and the median variant allele fraction (VAF) of the SRSF2 mutation (median VAF, 48.8% vs. 39.6% ; P=0.008) was higher in patients who progressed from PMF than those who progressed from other MPNs. ③ In the multivariate analysis, the complex karyotype (hazard ratio, 2.53; 95% confidence interval, 1.06-6.05; P=0.036) was independently associated with worse overall survival (OS) . Patients who received allogeneic stem cell transplantation (allo-HSCT) (median OS, 21.3 vs. 3 months; P=0.05) or acute myeloid leukemia-like (AML-like) therapy (median OS, 13 vs. 3 months; P=0.011) had significantly better OS than those who received supportive therapy. Conclusion: The proportions of patients with PMF-AP/BP with splenomegaly, myelofibrosis grade ≥2, a higher LDH level, and a shorter duration from diagnosis to the transformation to AP/BP were higher than those of patients with other Philadelphia-negative MPN-AP/BP. The complex karyotype was an independent prognostic factor for OS. Compared with supportive therapy, AML-like therapy and allo-HSCT could prolong the OS of patients with MPN-AP/BP.
Male
;
Female
;
Humans
;
Adult
;
Middle Aged
;
Aged
;
Blast Crisis/drug therapy*
;
Primary Myelofibrosis/genetics*
;
Prognosis
;
Splenomegaly
;
Retrospective Studies
;
Myeloproliferative Disorders/genetics*
;
Mutation
;
Leukemia, Myeloid, Acute
;
Janus Kinase 2/genetics*
10.Molecular features of 109 patients with chronic myelomonocytic leukemia in a single center.
Shi Qiang QU ; Li Juan PAN ; Tie Jun QIN ; Ze engF XU ; Bing LI ; Hui Jun WANG ; Qi SUN ; Yu Jiao JIA ; Cheng Wen LI ; Wen Yun CAI ; Qing Yan GAO ; Meng JIAO ; Zhi Jian XIAO
Chinese Journal of Hematology 2023;44(5):373-379
Objective: To explore the molecular features of chronic myelomonocytic leukemia (CMML) . Methods: According to 2022 World Health Organization (WHO 2022) classification, 113 CMML patients and 840 myelodysplastic syndrome (MDS) patients from March 2016 to October 2021 were reclassified, and the clinical and molecular features of CMML patients were analyzed. Results: Among 113 CMML patients, 23 (20.4%) were re-diagnosed as acute myeloid leukemia (AML), including 18 AML with NPM1 mutation, 3 AML with KMT2A rearrangement, and 2 AML with MECOM rearrangement. The remaining 90 patients met the WHO 2022 CMML criteria. In addition, 19 of 840 (2.3%) MDS patients met the WHO 2022 CMML criteria. At least one gene mutation was detected in 99% of CMML patients, and the median number of mutations was 4. The genes with mutation frequency ≥ 10% were: ASXL1 (48%), NRAS (34%), RUNX1 (33%), TET2 (28%), U2AF1 (23%), SRSF2 (21.1%), SETBP1 (20%), KRAS (17%), CBL (15.6%) and DNMT3A (11%). Paired analysis showed that SRSF2 was frequently co-mutated with ASXL1 (OR=4.129, 95% CI 1.481-11.510, Q=0.007) and TET2 (OR=5.276, 95% CI 1.979-14.065, Q=0.001). SRSF2 and TET2 frequently occurred in elderly (≥60 years) patients with myeloproliferative CMML (MP-CMML). U2AF1 mutations were often mutually exclusive with TET2 (OR=0.174, 95% CI 0.038-0.791, Q=0.024), and were common in younger (<60 years) patients with myelodysplastic CMML (MD-CMML). Compared with patients with absolute monocyte count (AMoC) ≥1×10(9)/L and <1×10(9)/L, the former had a higher median age of onset (60 years old vs 47 years old, P<0.001), white blood cell count (15.9×10(9)/L vs 4.4×10(9)/L, P<0.001), proportion of monocytes (21.5% vs 15%, P=0.001), and hemoglobin level (86 g/L vs 74 g/L, P=0.014). TET2 mutations (P=0.021) and SRSF2 mutations (P=0.011) were more common in patients with AMoC≥1×10(9)/L, whereas U2AF1 mutations (P<0.001) were more common in patients with AMoC<1×10(9)/L. There was no significant difference in the frequency of other gene mutations between the two groups. Conclusion: According to WHO 2022 classification, nearly 20% of CMML patients had AMoC<1×10(9)/L at the time of diagnosis, and MD-CMML and MP-CMML had different molecular features.
Humans
;
Aged
;
Middle Aged
;
Leukemia, Myelomonocytic, Chronic/genetics*
;
Prognosis
;
Splicing Factor U2AF/genetics*
;
Mutation
;
Myelodysplastic Syndromes/genetics*
;
Leukemia, Myeloid, Acute/genetics*

Result Analysis
Print
Save
E-mail