1.Studies on flavonoids from Derris eriocarpa.
Lun-xing WANG ; Hong-guo WU ; Hua ZHANG ; Hua-yong LOU ; Guang-yi LIANG ; Wen-wen JIANG ; Zai-chang YANG ; Wei-dong PAN
China Journal of Chinese Materia Medica 2015;40(15):3009-3012
Derris eriocarpa, a traditional Chinese medicine belonging to the family of Leguminosae, is widely distributed mainly over Yunnan, Guangxi and Guizhou of China. Modern pharmacological researches on this herb showed that it had extensive bioactivities, such as promoting urination, removing dampness and cough and reducing inspissated mucus and other biological activities. The extensive studies on the chemical constituents of this plant have resulted in the isolation of triterpenoids, steroids, fatty acid and others, but the flavone compounds haven't reported before. In our further research on the ethyl acetate of this plant, nine flavone compounds were obtained by column chromatography on silica gel, Sephadex LH-20, semi-prep HPLC, polyamide column chromatography and recrystallization for separation and purification. The structures were determined on the basis of extensive spectroscopic analysis, including MS, NMR experiments and comparison with spectroscopic data in the literature, respectively, as diosmetin (1), 3, 3'-di-O-methylquercetin (2), afromosin (3), 6, 3'-dihydroxy-7, 4'-dimethoxyisoflavone (4), odoratin (5), 7, 3'-dihydroxy-8, 4'-dimethoxyisoflavone (6), 6, 4'-dihydroxy-7, 3'-dimethoxyisoflavone (7), 5, 7, 4'-trihydroxy-3, 3', 5'-trimethoxyflavone (8), and alpinumisoflavone (9). All these compounds were isolated from Derris eriocarpa How for the first time. And the in vitro assays showed that compound 2 possessed moderate inhibitory activity against human cancer cells K562 and HEL.
Derris
;
chemistry
;
Flavonoids
;
chemistry
;
isolation & purification
;
pharmacology
;
Humans
;
K562 Cells
2.Effect of occlusal thickness design on the fracture resistance of endocrowns restored with lithium disilicate ceramic and zirconia.
Zhen-Xiang LIN ; Zai-Xing PAN ; Qi-Qing YE ; Zhi-Qiang ZHENG ; Jie LIN
West China Journal of Stomatology 2020;38(6):647-651
OBJECTIVE:
This study aimed to investigate the effect of occlusal thickness design on fracture resistance of endocrowns restored with lithium disilicate ceramic and zirconia.
METHODS:
A total of 24 artificial first mandibular molars were randomly divided into four groups with six teeth in each group as follows: group lithium disilicate ceramic-2 mm (lithium disilicate ceramic, with an occlusal thickness of 2 mm and a retainer length of 4 mm); group lithium disilicate ceramic-4 mm (lithium disilicate ceramic, with an occlusal thickness of 4 mm and a retainer length of 2 mm); group zirconia-2 mm (zirconia, with an occlusal thickness of 2 mm and a retainer length of 4 mm); and group zirconia-4 mm (zirconia, with an occlusal thickness of 4 mm and a retainer length of 2 mm). After adhesive cementation (RelyX Ultimate Clicker), all specimens were subjected to thermocycling (10 000 cycles). The specimens were subjected to fracture resistance testing at a 135° angle to the teeth at a crosshead speed of 0.5 mm·min⁻¹ in a universal testing machine. Data were analyzed with ANOVA and Tukey's HSD test by SPSS 15.0. The failure modes were classified.
RESULTS:
The fracture resistances of groups lithium disilicate ceramic-
2 mm, lithium disilicate ceramic-4 mm, zirconia-2 mm, and zirconia-4 mm were (890.54±83.41), (2 320.87±728.57),
(2 258.05±557.66), and (3 847.70±495.99) N respectively. Group zirconia-4 mm had the highest fracture resistance, whereas group lithium disilicate ceramic-2 mm had the lowest.
CONCLUSIONS
The fracture resistance of molar endocrown with zirconia is higher than that with lithium disilicate ceramic. Increasing the occlusal thickness can improve the fracture resistance but increase the risk of fracture of abutment.
Ceramics
;
Crowns
;
Dental Porcelain
;
Dental Restoration Failure
;
Dental Stress Analysis
;
Materials Testing
;
Zirconium