1.Variable localization of Toll-like receptors in human fallopian tube epithelial cells.
Fatemehsadat AMJADI ; Zahra ZANDIEH ; Ensieh SALEHI ; Reza JAFARI ; Nasrin GHASEMI ; Abbas AFLATOONIAN ; Alireza FAZELI ; Reza AFLATOONIAN
Clinical and Experimental Reproductive Medicine 2018;45(1):1-9
OBJECTIVE: To determine the localization, expression, and function of Toll-like receptors (TLRs) in fallopian tube epithelial cells. METHODS: The localization of TLRs in fallopian tube epithelial cells was investigated by immunostaining. Surprisingly, the intensity of staining was not equal in the secretory and ciliated cells. After primary cell culture of fallopian tube epithelial cells, ring cloning was used to isolate colonies of ciliated epithelial cells, distinct from non-ciliated epithelial cells. The expression of TLRs 1–10 was examined by quantitative real-time polymerase chain reaction, and protein localization was confirmed by immunostaining. The function of the TLRs was determined by interleukin (IL)-6 and IL-8 production in response to TLR2, TLR3, TLR5, TLR7, and TLR9 ligands. RESULTS: Fallopian tube epithelial cells expressed TLRs 1–10 in a cell-type-specific manner. Exposing fallopian tube epithelial cells to TLR2, TLR3, TLR5, TLR7, and TLR9 agonists induced the secretion of proinflammatory cytokines such as IL-6 and IL-8. CONCLUSION: Our findings suggest that TLR expression in the fallopian tubes is cell-type-specific. According to our results, ciliated cells may play more effective role than non-ciliated cells in the innate immune defense of the fallopian tubes, and in interactions with gametes and embryos.
Clone Cells
;
Cloning, Organism
;
Cytokines
;
Embryonic Structures
;
Epithelial Cells*
;
Fallopian Tubes*
;
Female
;
Germ Cells
;
Humans*
;
Interleukin-6
;
Interleukin-8
;
Interleukins
;
Ligands
;
Primary Cell Culture
;
Real-Time Polymerase Chain Reaction
;
Toll-Like Receptors*
2.Sex hormones alter the response of Toll-like receptor 3 to its specific ligand in fallopian tube epithelial cells.
Zahra ZANDIEH ; Fatemehsadat AMJADI ; Haghighat VAKILIAN ; Khashayar AFLATOONIAN ; Elham AMIRCHAGHMAGHI ; Alireza FAZELI ; Reza AFLATOONIAN
Clinical and Experimental Reproductive Medicine 2018;45(4):154-162
OBJECTIVE: The fallopian tubes play a critical role in the early events of fertilization. The rapid innate immune defense is an important part of the fallopian tubes. Toll-like receptor 3 (TLR3), as a part of the innate immune system, plays an important role in detecting viral infections. In this basic and experimental study, the effect of sex hormones on the function of TLR3 in the OE-E6/E7 cell line was investigated. METHODS: The functionality of TLR3 in this cell line was evaluated by cytokine measurements (interleukin [IL]-6 and IL-1b) and the effects of sex hormones on TLR3 were tested by an enzyme-linked immunosorbent assay kit. Additionally, TLR3 small interfering RNA (siRNA) and a TLR3 function-blocking antibody were used to confirm our findings. RESULTS: The production of IL-6 significantly increased in the presence of polyinosinic-polycytidylic acid (poly(I:C)) as the TLR3 ligand. Using a TLR3-siRNA-ransfected OE-E6/E7 cell line and function-blocking antibody confirmed that cytokine production was due to TLR3. In addition, 17-β estradiol and progesterone suppressed the production of IL-6 in the presence and absence of poly(I:C). CONCLUSION: These results imply that sex hormones exerted a suppressive effect on the function of TLR3 in the fallopian tube cell line when different concentrations of sex hormones were present. The current results also suggest that estrogen receptor beta and nuclear progesterone receptor B are likely to mediate the hormonal regulation of TLR3, as these two receptors are the main estrogen and progesterone receptors in OE-E6/E7 cell line.
Cell Line
;
Enzyme-Linked Immunosorbent Assay
;
Epithelial Cells*
;
Estradiol
;
Estrogen Receptor beta
;
Estrogens
;
Fallopian Tubes*
;
Female
;
Fertilization
;
Gonadal Steroid Hormones*
;
Immune System
;
Immunity, Innate
;
Interleukin-6
;
Poly I-C
;
Progesterone
;
Receptors, Progesterone
;
RNA, Small Interfering
;
Toll-Like Receptor 3*
;
Toll-Like Receptors*
3.Transition nuclear protein 1 as a novel biomarker in patients with fertilization failure
Jamileh Sadat MIRSANEI ; Hadis GHOLIPOUR ; Zahra ZANDIEH ; Masoumeh Golestan JAHROMI ; Mojgan Javedani MASROOR ; Mehdi MEHDIZADEH ; Fatemehsadat AMJADI
Clinical and Experimental Reproductive Medicine 2023;50(3):185-191
Objective:
Although intracytoplasmic sperm injection (ICSI) is a way to deal with in vitro fertilization failure, 3% of couples still experience repeated fertilization failure after attempted ICSI, despite having sperm within normal parameters. These patients are a challenging group whose sperm cannot fertilize the egg during ICSI. Unfortunately, no test can predict the risk of fertilization failure. Phospholipase C zeta (PLCζ) and transition nuclear proteins (TNPs) are essential factors for chromatin packaging during sperm maturation. This study aimed to assess PLCζ1 and TNP1 expression in the sperm of patients with fertilization failure and the correlations among the DNA fragmentation index, PLCζ1 and TNP1 gene and protein expression, and the risk of fertilization failure.
Methods:
In this study, 12 infertile couples with low fertilization rates (<25%) and complete failure of fertilization in their prior ICSI cycles despite normal sperm parameters were chosen as the case group. Fifteen individuals who underwent ICSI for the first time served as the control group. After sperm analysis and DNA fragmentation assays, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot analyses were performed to compare the gene and protein expression of PLCζ and TNP1 in both groups.
Results:
DNA fragmentation was significantly higher in the fertilization failure group. The qRT-PCR and Western blot results demonstrated significantly lower PLCζ and TNP1 gene and protein expression in these patients than in controls.
Conclusion
The present study showed that fertilization failure in normozoospermic men was probably due to deficient DNA packaging and expression of TNP1.
4.TLR-1, TLR-2, and TLR-6 MYD88–dependent signaling pathway: A potential factor in the interaction of high-DNA fragmentation human sperm with fallopian tube epithelial cells
Zahra ZANDIEH ; Azam GOVAHI ; Azin AGHAMAJIDI ; Ehsan RAOUFI ; Fatemehsadat AMJADI ; Samaneh AGHAJANPOUR ; Masoomeh GOLESTAN ; Reza AFLATOONIAN
Clinical and Experimental Reproductive Medicine 2023;50(1):44-52
Objective:
The DNA integrity of spermatozoa that attach to fallopian tube (FT) cells is higher than spermatozoa that do not attach. FT epithelial cells can distinguish normal and abnormal sperm chromatin. This study investigated the effects of sperm with a high-DNA fragmentation index (DFI) from men with unexplained repeated implantation failure (RIF) on the Toll-like receptor (TLR) signaling pathway in human FT cells in vitro.
Methods:
Ten men with a RIF history and high-DFI and 10 healthy donors with low-DFI comprised the high-DFI (>30%) and control (<30%) groups, respectively. After fresh semen preparation, sperm were co-cultured with a human FT epithelial cell line (OE-E6/E7) for 24 hours. RNA was extracted from the cell line and the human innate and adaptive immune responses were tested using an RT2 profiler polymerase chain reaction (PCR) array.
Results:
The PCR array data showed significantly higher TLR-1, TLR-2, TLR-3, TLR-6, interleukin 1α (IL-1α), IL-1β, IL-6, IL-12, interferon α (IFN-α), IFN-β, tumor necrosis factor α (TNF-α), CXCL8, GM-CSF, G-CSF, CD14, ELK1, IRAK1, IRAK2, IRAK4, IRF1, IRF3, LY96, MAP2K3, MAP2K4, MAP3K7, MAP4K4, MAPK8, MAPK8IP3, MYD88, NFKB1, NFKB2, REL, TIRAP, and TRAF6 expression in the high-DFI group than in the control group. These factors are all involved in the TLR-MyD88 signaling pathway.
Conclusion
The MyD88-dependent pathway through TLR-1, TLR-2, and TLR-6 activation may be one of the main inflammatory pathways activated by high-DFI sperm from men with RIF. Following activation of this pathway, epithelial cells produce inflammatory cytokines, resulting in neutrophil infiltration, activation, phagocytosis, neutrophil extracellular trap formation, and apoptosis.