1.One stage cholecystectomy during radical gastrectomy for gastric cancer with gallbladder disease
Guojing ZHANG ; Ruotong LI ; Zhicheng ZHAO ; Weidong LI ; Weihua FU
Chinese Journal of General Surgery 2016;31(1):40-42
Objective To evaluate radical gastrectomy combined with cholecystectomy for gastric cancer patients with concomitant gallbladder disease.Methods Clinical data of 702 gastric cancer patients undergoing radical gastrectomy (614 patients) only or combined with cholecystectomy during radical gastrectomy from October 2009 to September 2014 in our department was retrospectively analyzed.Results The operating time of patients with simultaneous cholecystectomy was(348 ± 111)min.the operating time of patients with radical gastrectomy only was (274 ± 89) min (t =3.812,P < 0.05).Perioperative and postoperative complications,hospitalization expenses and 5-year survival rates were not statistically significant (P > 0.05).Conclusions Radical gastrectomy with cholecystectomy for gastric cancer with gallbladder disease patients is safe and feasible.
2.A widely adaptable approach to generate integration-free iPSCs from non-invasively acquired human somatic cells.
Zhichao DING ; Lina SUI ; Ruotong REN ; Yanjun LIU ; Xiuling XU ; Lina FU ; Ruijun BAI ; Tingting YUAN ; Ying HAO ; Weiqi ZHANG ; Huize PAN ; Wensu LIU ; Han YU ; Concepcion Rodriguez ESTEBAN ; Xiaobing YU ; Ze YANG ; Jian LI ; Xiaomin WANG ; Juan Carlos IZPISUA BELMONTE ; Guang-Hui LIU ; Fei YI ; Jing QU
Protein & Cell 2015;6(5):386-389
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Cell Culture Techniques
;
methods
;
Child
;
Female
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
metabolism
;
Male
;
Middle Aged
3.Research progress on the structure and function of the type IX secretion system of Porphyromonas gingivalis
Journal of Prevention and Treatment for Stomatological Diseases 2023;31(11):825-830
The Porphyromonas gingivalis type IX secretion system (T9SS) is a recently discovered protein secretion system that is widely distributed in Bacillus cereus. The T9SS is structurally complex and powerful. More than 20 T9SS components have been verified, and more than 30 virulence factors can be secreted by Porphyromonas gingivalis alone, which contributes significant to the pathogenicity of Porphyromonas gingivalis. T9SS is a large protein complex spanning the inner cell membrane, periplasm, and outer cell membrane. Through the structural and functional connections among its components, it forms a sophisticated functional complex that includes power provision, energy transduction, inner and outer membrane translocation, outer membrane modification, and regulatory systems to recognize, translocate, shear, and modify cargo proteins and translocate bacterial intracellular cargo proteins to the cell surface. In recent years, with advancements in X-ray diffraction and in situ cryoelectron microscopy, the exploration of T9SS has evolved from the functional study of single components to the in situ structural study of multiprotein complexes. Still, the structural resolution of the protein still has shortcomings such as low resolution and an inability to capture dynamic functional structures. Future research directions should focus more on exploring how T9SS interacts and functions with cargo proteins. In this paper, we review the research progress on Porphyromonas gingivalis T9SS on X-ray diffraction and cryoelectron microscopy structure resolution in order to gain a deeper understanding of the transport mechanism of T9SS.
4.Imprinting genes modified parthenogenetic embryonic stem cells produce full-term mouse via tetraploid complementation.
Xu LI ; Keli PENG ; Jinxin ZHANG ; Qian GAO ; Wenhao ZHANG ; Ruotong HUA ; Ling SHUAI
Chinese Journal of Biotechnology 2019;35(5):910-918
Parthenogenetic embryonic stem cells (pESCs) derived from bi-maternal genomes do not have competency of tetraploid complementation, due to lacking of paternal imprinting genes. To make pESCs possess fully development potentials and similar pluripotency to zygote-derived ESCs, we knocked out one allelic gene of the two essential maternal imprinting genes (H19 and IG) in their differentially methylated regions (DMR) via CRISPR/Cas9 system and obtained double knock out (DKO) pESCs. Maternal pESCs had similar morphology, expression levels of pluripotent makers and in vitro neural differentiation potentials to zygotes-derived ESCs. Besides that, DKO pESCs could contribute to full-term fetuses through tetraploid complementation, proving that they held fully development potentials. Derivation of DKO pESCs provided a type of major histocompatibility complex (MHC) matched pluripotent stem cells, which would benefit research in regenerative medicine.
Animals
;
Embryonic Stem Cells
;
Gene Knockout Techniques
;
Genomic Imprinting
;
Mice
;
Parthenogenesis
;
Pluripotent Stem Cells
;
Regenerative Medicine
;
Tetraploidy
5.Porphyromonas gingivalis enhances the proliferation of colorectal cancer Caco-2 cells via the JAK2-STAT3 pathway
ZHANG Ruotong ; LIU Xiaochen ; YE Wei
Journal of Prevention and Treatment for Stomatological Diseases 2023;31(9):625-633
Objective :
To investigate the effect of pathogenic bacterium-Porphyromonas gingivalis (P.g) on the proliferation and inflammatory factor expression of human colorectal cancer Caco-2 cells, to determine whether the Janus kinase 2-signal transducers and activators of transcription 3 (JAK2-STAT3) pathway is involved in the regulation of Caco-2 cell proliferation by P.g and to provide an experimental basis for further exploring the relationship between P.g and colorectal cancer.
Methods :
Caco-2 cells were cultured in vitro, and P.g at different multiplicities of infection (MOIs) (0, 1, 10, 25) was selected to stimulate for 12, 24 and 48 h. The effect of P.g on the proliferation of Caco-2 cells was detected by CCK8. The stimulation time was set as 12, 24 and 48 h. MOI=0 was the control group, and MOI=1, 10 and 25 comprised the experimental group. qRT-PCR and Western blot were used to detect the changes in interleukin-6 (IL-6), interleukin-10(IL-10), JAK2 and STAT3 gene and protein (phosphorylated protein) levels in each group.
Results :
After P.g infection of Caco-2 cells, P.g had a sustained stimulatory effect on the cells for 12, 24 and 48 h at MOI=1 and MOI=10 compared with the control group. Compared with that in the control group, the expression of pro-inflammatory factor IL-6 and related proliferative pathway protein JAK2 and STAT3 in Caco-2 cells with P.g infection increased in a concentration- and time-dependent manner (P<0.05). Additionally, the expression of IL-10, an anti-inflammatory factor, in Caco-2 cells infected with P.g decreased (P<0.05). After the addition of the JAK2 inhibitor AZ960, the proliferation of Caco-2 cells infected with P.g decreased, and the mRNA expression of STAT3 and JAK2 and the protein expression of p-STAT3 and p-JAK2 decreased (P<0.05).
Conclusion
P.g can promote the proliferation of the colorectal cancer cell line Caco-2, and the effect of P.g on Caco-2 cells may promote cell proliferation through the JAK2-STAT3 pathway while promoting the expression of the proinflammatory factor IL-6 and inhibiting the expression of the anti-inflammatory factor IL-10, creating an inflammatory environment conducive to cell proliferation, which may be the mechanism by which P.g affects the proliferation of Caco-2 cells.
6.Application of TARP luciferase reporter system in function identification of CAR-T cells.
Sixin LIANG ; Rui ZHENG ; Xiaojuan ZHAO ; Yiting ZHANG ; Pengju WANG ; Ruotong MENG ; Bo YAN ; Angang YANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):397-403
Objective To investigate a convenient and quantitative solution to activation levels and functional characterization of CAR-T cells by inserting T cell activity-responsive promoter (TARP) nanoluciferase reporter gene system into a lentiviral plasmid containing the gene encoding the chimeric antigen receptor (CAR). Methods The recombinant plasmid was constructed by using whole gene synthesis and molecular cloning techniques. The lentivirus was packaged and was infected with human primary T lymphocytes. Flow cytometry was used to detected the positive rate of lentivirus-infected T cells. The functional characterization of CAR-T cells was identified by luciferase reporter gene system, Western blot, flow cytometry, and small animal live imaging techniques. Results The results of enzyme digestion identification and the plasmid sequencing showed that the recombinant plasmids were constructed, and flow cytometry displayed the normal preparation of CAR-T cells. This system could dynamically respond to the activation of CAR-T cells by luciferase reporter gene system. The functional assay in vitro confirmed that the system could reflect the exhaustion of CAR-T cells, and the small animal live imaging results demonstrated that the system can be used as a tracer of CAR-T cells in mice. Conclusion TARP nanoluciferase reporter gene system provides a more convenient, sensitive and quantitative method for evaluating CAR-T cells activation level, exhaustion phenotype and tracing.
Humans
;
Animals
;
Mice
;
T-Lymphocytes
;
Cell Line, Tumor
;
Receptors, Chimeric Antigen/genetics*
;
Promoter Regions, Genetic
;
Immunotherapy, Adoptive/methods*
7.Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs.
Lina FU ; Xiuling XU ; Ruotong REN ; Jun WU ; Weiqi ZHANG ; Jiping YANG ; Xiaoqing REN ; Si WANG ; Yang ZHAO ; Liang SUN ; Yang YU ; Zhaoxia WANG ; Ze YANG ; Yun YUAN ; Jie QIAO ; Juan Carlos IZPISUA BELMONTE ; Jing QU ; Guang-Hui LIU
Protein & Cell 2016;7(3):210-221
Xeroderma pigmentosum (XP) is a group of genetic disorders caused by mutations of XP-associated genes, resulting in impairment of DNA repair. XP patients frequently exhibit neurological degeneration, but the underlying mechanism is unknown, in part due to lack of proper disease models. Here, we generated patient-specific induced pluripotent stem cells (iPSCs) harboring mutations in five different XP genes including XPA, XPB, XPC, XPG, and XPV. These iPSCs were further differentiated to neural cells, and their susceptibility to DNA damage stress was investigated. Mutation of XPA in either neural stem cells (NSCs) or neurons resulted in severe DNA damage repair defects, and these neural cells with mutant XPA were hyper-sensitive to DNA damage-induced apoptosis. Thus, XP-mutant neural cells represent valuable tools to clarify the molecular mechanisms of neurological abnormalities in the XP patients.
DNA Damage
;
DNA Repair
;
DNA-Binding Proteins
;
genetics
;
metabolism
;
Female
;
Humans
;
Induced Pluripotent Stem Cells
;
metabolism
;
pathology
;
Male
;
Models, Biological
;
Mutation
;
Neural Stem Cells
;
metabolism
;
pathology
;
Xeroderma Pigmentosum
;
genetics
;
metabolism
;
pathology
8.Deciphering primate retinal aging at single-cell resolution.
Si WANG ; Yuxuan ZHENG ; Qingqing LI ; Xiaojuan HE ; Ruotong REN ; Weiqi ZHANG ; Moshi SONG ; Huifang HU ; Feifei LIU ; Guoqiang SUN ; Shuhui SUN ; Zunpeng LIU ; Yang YU ; Piu CHAN ; Guo-Guang ZHAO ; Qi ZHOU ; Guang-Hui LIU ; Fuchou TANG ; Jing QU
Protein & Cell 2021;12(11):889-898
9.Chemical screen identifies a geroprotective role of quercetin in premature aging.
Lingling GENG ; Zunpeng LIU ; Weiqi ZHANG ; Wei LI ; Zeming WU ; Wei WANG ; Ruotong REN ; Yao SU ; Peichang WANG ; Liang SUN ; Zhenyu JU ; Piu CHAN ; Moshi SONG ; Jing QU ; Guang-Hui LIU
Protein & Cell 2019;10(6):417-435
Aging increases the risk of various diseases. The main goal of aging research is to find therapies that attenuate aging and alleviate aging-related diseases. In this study, we screened a natural product library for geroprotective compounds using Werner syndrome (WS) human mesenchymal stem cells (hMSCs), a premature aging model that we recently established. Ten candidate compounds were identified and quercetin was investigated in detail due to its leading effects. Mechanistic studies revealed that quercetin alleviated senescence via the enhancement of cell proliferation and restoration of heterochromatin architecture in WS hMSCs. RNA-sequencing analysis revealed the transcriptional commonalities and differences in the geroprotective effects by quercetin and Vitamin C. Besides WS hMSCs, quercetin also attenuated cellular senescence in Hutchinson-Gilford progeria syndrome (HGPS) and physiological-aging hMSCs. Taken together, our study identifies quercetin as a geroprotective agent against accelerated and natural aging in hMSCs, providing a potential therapeutic intervention for treating age-associated disorders.