1.Research progress in mechanism and preclinical treatment for blast traumatic brain injury
Chinese Journal of Trauma 2020;36(5):470-474
Blast traumatic brain injury (bTBI) often causes irreversible damage to the brain which seriously endangers the lives of the wounded and can be accompanied by various complications, and has high disability and morbility in peacetime and wartime. The bTBI is divided into primary injury and secondary injury, resulting in a series of neuropsychiatric symptoms. The mechanism of bTBI contains cracking effect, implosion effect, inertia effect and cavitation effect. Multiple factors, such as shrapnel injury caused by explosion, collision of body being thrown with hard objects and smash of buildings, can lead to brain injury. There are challenges in the diagnosis and treatment of bTBI, because the injury is often closed, the onset is slow, the diagnosis is easy to missed, the pathogenesis is complex, and the clinical manifestations vary. The authors review the mechanism of bTBI and its preclinical treatment, hoping to provide a way for the preclinical treatment of bTBI.
2.Effects of Janus kinase/signal transduction and activator of transcription 3 pathway inhibitor in skeletal muscle function in severely burned rats and its mechanism
Hailiang BAI ; Hongjie DUAN ; Chen CHEN ; Lingying LIU ; Yushou WU ; Shaofang HAN ; Xiaoteng WANG
Chinese Journal of Burns 2021;37(3):271-278
Objective:To observe the functional changes of skeletal muscle in severely burned rats, and to investigate the effects and possible mechanisms of Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway inhibitor in skeletal muscle function.Methods:The experiment research method was applied. One hundred and twenty male Wistar rats of 8-week-old were divided into sham injury group, simple burn group, and burn+JAK/STAT3 inhibitor group according to the random number table, with 40 rats in each group. Rats in simple burn group and burn+JAK/STAT3 inhibitor group were inflicted with 50% total body surface area full-thickness scald on the back and abdomen, and rats in sham injury group were sham injured. Rats in burn+JAK/STAT3 inhibitor group were intraperitoneally injected with JAK/STAT3 inhibitor ruxolitinib. On post injury day (PID) 0 (immediately), 1, 4, 7, and 14, 8 rats in each group were used to measure the specific force generated by extensor digitorum longus in optimal length stimulated with pulse frequency of 20, 40, 60, 80, 100, 120, 140, and 160 Hz using a multichannel electrophysiological instrument, and specific force in fatigue period of extensor digitorum longus in optimal length stimulated with pulse frequency of 50 Hz for 0, 10, 20, 30, 60, 120, 180, 240, and 300 s. On PID 0, 1, 4, 7, and 14, carbonyl compound content of extensor digitorum longus was determined by ultraviolet spectrophotometry, and ATP content of extensor digitorum longus was determined by micrometry. Data were statistically analyzed with analysis of variance for repeated measurement, analysis of variance for factorial design, Bonferroni method, and t test. Results:Compared with those of sham injury group, specific forces of extensor digitorum longus of rats in simple burn group were significantly decreased after being stimulated with all the pulse frequency on PID 0, 1, 7, and all the pulse frequency except for 20 Hz on PID 4, and pulse frequency of 20 and 40 Hz on PID 14 ( P<0.05 or P<0.01). Compared with those of simple burn group, specific forces of extensor digitorum longus of rats in burn+JAK/STAT3 inhibitor group were significantly increased after being stimulated with all the pulse frequency except for 20 Hz on PID 1 and all the pulse frequency on PID 4, 7, and 14 ( P<0.05 or P<0.01). Compared with those of sham injury group, specific forces of extensor digitorum longus of rats in simple burn group were significantly decreased in fatigue period at all the time points post injury and stimulation time points except for 240 s on PID 7 ( P<0.05 or P<0.01). Compared with those of simple burn group, specific forces of extensor digitorum longus of rats in burn+JAK/STAT3 inhibitor group were obviously increased in fatigue period at all the stimulation time points except for 60 and 300 s on PID 1 and 240 s on PID 4, and all the stimulation time points on PID 7 and 14 ( P<0.05 or P<0.01). The carbonyl compound content of extensor digitorum longus of rats in simple burn group on PID 0, 1, 4, 7, and 14 was (0.651±0.155), (0.739±0.194), (0.618±0.086), (0.813±0.162), (0.615±0.115) nmol/mg, which were obviously higher than (0.196±0.019), (0.156±0.004), (0.169±0.023) (0.156±0.027), (0.175±0.008) nmol/mg in sham injury group ( t=7.219, 6.491, 10.938, 9.182, 11.589, P<0.01) and (0.538±0.069), (0.369±0.059), (0.273±0.061), (0.334±0.109), (0.318±0.101) nmol/mg in burn+JAK/STAT3 inhibitor group ( t=2.446, 4.689, 8.355, 5.754, 6.097, P<0.05 or P<0.01). The ATP content in extensor digitorum longus of rats in simple burn group on PID 1, 4, 7, and 14 was obviously lower than that in sham injury group ( t=7.159, 7.591, 7.473, 4.026, P<0.01) and burn+JAK/STAT3 inhibitor group ( t=2.295, 2.575, 2.453, 2.997, P<0.05). Conclusions:After severe burn, the specific force of extensor digitorum longus in rats decreased significantly after being stimulated with different pulse frequencies, and the extensor digitorum longus in rats was prone to fatigue. Blocking the JAK/STAT3 signaling pathway can reduce the oxidative stress of muscle protein and increase ATP content, thereby reducing the muscle strength decline caused by burn injury and improving the muscle strength decline during fatigue period.
3.Effects of advanced platelet-rich fibrin/chitosan thermosensitive hydrogel on full-thickness skin defect wound healing in diabetic rats
Haoyi XUN ; Xiaowei SU ; Fangchao HU ; Xiangyu LIU ; Yushou WU ; Tian LIU ; Ran SUN ; Hongjie DUAN ; Yunfei CHI ; Jiake CHAI
Chinese Journal of Burns 2024;40(5):451-460
Objective:To prepare advanced platelet-rich fibrin (A-PRF)/chitosan thermosensitive hydrogel (hereinafter referred to as composite hydrogel) and explore the effects of composite hydrogel on full-thickness skin defect wound healing in diabetic rats.Methods:This study was an experimental study. The composite hydrogel with porous mesh structure and thermosensitive characteristics was successfully prepared, containing A-PRF with mass concentrations of 10, 15, 20, 50, and 100 g/L. Diabetic model was successfully established in male Sprague-Dawley rats aged 6-8 weeks by intraperitoneal injection of streptozotocin, and 4 full-thickness skin defect wounds were established on the back of each rat (finally the model was successfully established in 36 rats). Three wounds of each rat were divided into blank group (no drug intervention), positive control group (dropping recombinant human granulocyte-macrophage stimulating factor gel), and chitosan hydrogel group (dropping chitosan hydrogel solution). Thirty rats were collected, and the remaining one wound of each rat (totally 30 wounds) was divided into 10, 15, 20, 50, and 100 g/L composite hydrogel groups, with 6 wounds in each group, which were dropped with composite hydrogel solution containing 10, 15, 20, 50, and 100 g/L A-PRF, respectively. Taking the remaining six rats, the remaining one wound from each rat was dropped with composite hydrogel solution containing 100 g/L A-PRF. On 14 d after injury, 6 rats with one wound dropped with composite hydrogel containing 100 g/L A-PRF were selected for hematoxylin-eosin (HE) staining to observe the inflammation, hemorrhage, or necrosis of the heart, liver, spleen, lung, and kidney. On 10 d after injury, 6 rats with one wound dropped with composite hydrogel containing 15 g/L A-PRF were selected to observe the blood perfusion of wounds in the four groups (with sample size of 6). On 7 and 14 d after injury, the wound healing rates in the eight groups were calculated. On 14 d after injury, the wound tissue in the eight groups was taken for HE and Masson staining to observe the formation of new epithelium and collagen formation, respectively; the positive expressions of CD31 and vascular endothelial growth factor A (VEGFA) were detected by immunohistochemistry, and the percentages of positive areas were calculated; the protein expressions of CD31 and VEGFA were detected by Western blotting; the mRNA expressions of CD31 and VEGFA were detected by real-time fluorescent quantitative reverse transcription polymerase chain reaction method (with all sample sizes of 4).Results:On 14 d after injury, no obvious inflammation, hemorrhage, or necrosis was observed in the heart, liver, spleen, lung, and kidney in the 6 rats. On 10 d after injury, the blood perfusion volume of wound in 15 g/L composite hydrogel group was significantly more than that in blank group, positive control group, and chitosan hydrogel group, respectively (with P values all <0.05). On 7 and 14 d after injury, the wound healing rates of blank group were (26.0±8.9)% and (75.0±1.8)%, which were significantly lower than those of positive control group, chitosan hydrogel group, and 10, 15, 20, 50, and 100 g/L composite hydrogel groups, respectively ((45.8±3.2)%, (49.8±3.7)%, (51.2±2.9)%, (68.5±2.4)%, (68.8±1.5)%, (72.7±2.1)%, (75.0±3.7)% and (79.1±1.9)%, (77.2±1.7)%, (82.3±1.3)%, (89.6±1.9)%, (89.8±1.3)%, (87.3±1.1)%, (87.9±1.3)%), P<0.05; the wound healing rates of positive control group, chitosan hydrogel group, and 10 g/L composite hydrogel group were significantly lower than those of 15, 20, 50, and 100 g/L composite hydrogel groups ( P<0.05). On 14 d after injury, the wound epithelialization degrees of 15, 20, 50, and 100 g/L composite hydrogel groups were higher than those of the other 4 groups, the new microvascular situation was better, and the collagen was more abundant and arranged more neatly. On 14 d after injury, the percentages of CD31 and VEGFA positive areas in wounds in positive control group and the percentage of VEGFA positive area in wounds in chitosan hydrogel group were significantly higher than those in blank group ( P<0.05), the percentage of VEGFA positive area in wounds in 10 g/L composite hydrogel group was significantly higher than that in blank group, chitosan hydrogel group, and positive control group (with P values all <0.05), and the percentages of CD31 and VEGFA positive areas in wounds in 15, 20, 50, and 100 g/L composite hydrogel groups were significantly higher than those in blank group, positive control group, chitosan hydrogel group, and 10 g/L composite hydrogel group ( P<0.05). On 14 d after injury, the protein and mRNA expressions of CD31 and VEGFA in wound tissue in chitosan hydrogel group, positive control group, and 10 g/L composite hydrogel group were significantly higher than those in blank group ( P<0.05); the protein expression of VEGFA in wound tissue in 10 g/L composite hydrogel group was significantly higher than that in positive control group ( P<0.05), and the mRNA expressions of CD31 and VEGFA in wound tissue in 10 g/L composite hydrogel group were significantly higher than those in positive control group and chitosan hydrogel group ( P<0.05); the protein and mRNA expressions of CD31 and VEGFA in wound tissue in 15, 20, 50, and 100 g/L composite hydrogel groups were significantly higher than those in blank group, positive control group, chitosan hydrogel group, and 10 g/L composite hydrogel group ( P<0.05); the mRNA expressions of CD31 and VEGFA in wound tissue in chitosan hydrogel group were significantly lower than those in positive control group ( P<0.05). Conclusions:The composite hydrogel has high biological safety, can improve wound blood perfusion, effectively promote the formation of blood vessels and collagen in wound tissue, thus promoting the wound healing of full-thickness skin defects in diabetic rats. 15 g/L is the optimal mass concentration of A-PRF in composite hydrogel.