1.Establishment and application of information resource of mutant mice in RIKEN BioResource Research Center
Hiroshi MASUYA ; Daiki USUDA ; Hatsumi NAKATA ; Naomi YUHARA ; Keiko KURIHARA ; Yuri NAMIKI ; Shigeru IWASE ; Toyoyuki TAKADA ; Nobuhiko TANAKA ; Kenta SUZUKI ; Yuki YAMAGATA ; Norio KOBAYASHI ; Atsushi YOSHIKI ; Tatsuya KUSHIDA
Laboratory Animal Research 2021;37(1):21-31
Online databases are crucial infrastructures to facilitate the wide effective and efficient use of mouse mutant resources in life sciences. The number and types of mouse resources have been rapidly growing due to the development of genetic modification technology with associated information of genomic sequence and phenotypes. Therefore, data integration technologies to improve the findability, accessibility, interoperability, and reusability of mouse strain data becomes essential for mouse strain repositories. In 2020, the RIKEN BioResource Research Center released an integrated database of bioresources including, experimental mouse strains, Arabidopsis thaliana as a laboratory plant, cell lines, microorganisms, and genetic materials using Resource Description Framework-related technologies. The integrated database shows multiple advanced features for the dissemination of bioresource information. The current version of our online catalog of mouse strains which functions as a part of the integrated database of bioresources is available from search bars on the page of the Center (https://brc.riken.jp) and the Experimental Animal Division (https://mus.brc.riken.jp/) websites. The BioResource Research Center also released a genomic variation database of mouse strains established in Japan and Western Europe, MoG+ (https://molossinus.brc.riken.jp/mogplus/), and a database for phenotype-phenotype associations across the mouse phenome using data from the International Mouse Phenotyping Platform. In this review, we describe features of current version of databases related to mouse strain resources in RIKEN BioResource Research Center and discuss future views.
2.Establishment and application of information resource of mutant mice in RIKEN BioResource Research Center
Hiroshi MASUYA ; Daiki USUDA ; Hatsumi NAKATA ; Naomi YUHARA ; Keiko KURIHARA ; Yuri NAMIKI ; Shigeru IWASE ; Toyoyuki TAKADA ; Nobuhiko TANAKA ; Kenta SUZUKI ; Yuki YAMAGATA ; Norio KOBAYASHI ; Atsushi YOSHIKI ; Tatsuya KUSHIDA
Laboratory Animal Research 2021;37(1):21-31
Online databases are crucial infrastructures to facilitate the wide effective and efficient use of mouse mutant resources in life sciences. The number and types of mouse resources have been rapidly growing due to the development of genetic modification technology with associated information of genomic sequence and phenotypes. Therefore, data integration technologies to improve the findability, accessibility, interoperability, and reusability of mouse strain data becomes essential for mouse strain repositories. In 2020, the RIKEN BioResource Research Center released an integrated database of bioresources including, experimental mouse strains, Arabidopsis thaliana as a laboratory plant, cell lines, microorganisms, and genetic materials using Resource Description Framework-related technologies. The integrated database shows multiple advanced features for the dissemination of bioresource information. The current version of our online catalog of mouse strains which functions as a part of the integrated database of bioresources is available from search bars on the page of the Center (https://brc.riken.jp) and the Experimental Animal Division (https://mus.brc.riken.jp/) websites. The BioResource Research Center also released a genomic variation database of mouse strains established in Japan and Western Europe, MoG+ (https://molossinus.brc.riken.jp/mogplus/), and a database for phenotype-phenotype associations across the mouse phenome using data from the International Mouse Phenotyping Platform. In this review, we describe features of current version of databases related to mouse strain resources in RIKEN BioResource Research Center and discuss future views.
3.Effect of anodal transcranial direct current stimulation on full-effort stepping exercise performance
Syusaku SASADA ; Tomoya ISHII ; Yuri KOBAYASHI ; Nao SHIMIZU ; Tomoyoshi KOMIYAMA
Japanese Journal of Physical Fitness and Sports Medicine 2022;71(2):239-247
We investigated the effect of anodal transcranial direct current stimulation (anodal tDCS) on the performance of full-effort box stepping exercises in athletes and non-athletes. Twenty-one subjects (athletes: five men and six women, non-athletes: four men and six women) participated in this study. tDCS was applied through two electrodes placed on the vertex (anode) and the forehead (cathode). A 2-mA anodal stimulation was applied for 15 minutes, while sham stimulation was applied on different days with similar electrodes. Participants were asked to apply a maximal effort while stepping up and down a 10-cm tall box for 20 s following termination of the tDCS. The 20 s box stepping was repeated three times with 15 s of rest. The number of total steps was significantly increased following anodal tDCS compared to sham tDCS. The degree of increase in performance was more prominent in non-athletes than in athletes. In non-athletes, a differential pattern of fatigue in performance between stimulus conditions was observed. In contrast, this significant performance modulation between stimulus conditions was not detected in athletes. Our findings of improved stepping performance following anodal tDCS depended on the training level of the subject group; this implies modulation of descending command from CNS to active muscles by tDCS. It is suggested that the degree of neural modulation for controlling complex and full-effort leg movements due to tDCS is higher in non-athletes than in athletes.