1.Novel cationic liposome loading siRNA inhibits the expression of hepatitis B virus HBx gene.
Yajuan WANG ; Yuqing GAO ; Beibei NI ; Chan LI ; Tianjiao WEN ; Yanling WANG ; Jia WANG ; Chunlei LI
Acta Pharmaceutica Sinica 2014;49(9):1326-30
In order to solve the problem of selection and in vivo delivery problem in siRNA treatment, hepatitis B virus (HBV) HBx gene which could be targeted by siRNA was studied. The siRNA expression plasmid which specific inhibits HBx expression was obtained by in vitro selection via a dual-luciferase plasmid including HBx-Fluc fusion protein expression domain. The selected siRNA expression plasmid was then encapsulated in PEG-modified cationic liposome, which was devoted into pharmacodynamic studies at both cellular and animal level. The results illustrated that the cationic liposome which encapsulated siRNA expression plasmid could effectively inhibit HBx gene expression both in vitro and in vivo.
2. Risk factors for early death in acute myocardial infarction patients complicating with ventricular septal rupture
Yuqing NI ; Jianjun TANG ; Shi TAI ; Liang TANG ; Xinqun HU ; Zhenfei FANG ; Hongwei PAN ; He HUANG ; Changhui LIU ; Gaofeng ZENG ; Shenghua ZHOU
Chinese Journal of Cardiology 2018;46(12):981-986
Objective:
To assess the clinical characteristics and identify the risk factors in the acute myocardial infarction (AMI) patients complicating with ventricular septal rupture (VSR).
Methods:
A retrospective study was performed on 96 AMI patients complicating with VSR, who were hospitalized in the Second Xiangya Hospital of Central South University, Hunan Provincial Peoples′ Hospital, the First Affiliated Hospital of University of South China, the Second Affiliated hospital of University of south China, Xiangtan Central Hospital from December 2007 to May 2017. There were 46 females and the age was (66.2±10.7) years (from 43 to 90 years). Patients were divided into in-hospital survival group (
3.Dosimetric study of isolated neuronal networks under 2.6 GHz radiofrequency exposure
Yuqing WANG ; Xuelong ZHAO ; Qi LIU ; Guofu DONG ; Yu WEI ; Ni CHEN ; Xiaoman LIU ; Changzhen WANG ; Hongmei ZHOU
Military Medical Sciences 2024;48(2):95-100
Objective To evaluate the characteristics of dose distribution of neuronal networks in vitro on microelectrode arrays(MEAs)under 2.6 GHz radiofrequency(RF)exposure.Methods The MEAs were coupled with a real-time RF exposure setup,and electromagnetic simulation software was used to calculate the RF dose absorbed in cultured neuronal networks.A fiber-optic temperature probe was used for experimental validation and monitoring of the cell temperature during RF exposure.The MEAs were used to record the electrical activity of neurons.Results For an input power of 1 W,a specific absorption rate(SAR)level of(15.51±2.48)W/kg was calculated,and the variability of the SAR distribution was 16%.In our experimental system,the temperature elevation of neurons was up to 0.15℃for an SAR of 4 W/kg RF exposure.Conclusion The exposure device can provide high SAR efficiency and uniformity in the 2.6 GHz band,which is suitable for studying the real-time effects of RF fields on the electrical activity of neuronal networks in the 5G network band.
4.Cucurbitacin B-induced G2/M cell cycle arrest of conjunctival melanoma cells mediated by GRP78-FOXM1-KIF20A pathway.
Jinlian WEI ; Xin CHEN ; Yongyun LI ; Ruoxi LI ; Keting BAO ; Liang LIAO ; Yuqing XIE ; Tiannuo YANG ; Jin ZHU ; Fei MAO ; Shuaishuai NI ; Renbing JIA ; Xiaofang XU ; Jian LI
Acta Pharmaceutica Sinica B 2022;12(10):3861-3876
Conjunctival melanoma (CM) is a rare and fatal malignant eye tumor. In this study, we deciphered a novel anti-CM mechanism of a natural tetracyclic compound named as cucurbitacin B (CuB). We found that CuB remarkably inhibited the proliferation of CM cells including CM-AS16, CRMM1, CRMM2 and CM2005.1, without toxicity to normal cells. CuB can also induce CM cells G2/M cell cycle arrest. RNA-seq screening identified KIF20A, a key downstream effector of FOXM1 pathway, was abolished by CuB treatment. Further target identification by activity-based protein profiling chemoproteomic approach revealed that GRP78 is a potential target of CuB. Several lines of evidence demonstrated that CuB interacted with GRP78 and bound with a K d value of 0.11 μmol/L. Furthermore, ATPase activity evaluation showed that CuB suppressed GRP78 both in human recombinant GRP78 protein and cellular lysates. Knockdown of the GRP78 gene significantly induced the downregulation of FOXM1 and related pathway proteins including KIF20A, underlying an interesting therapeutic perspective. Finally, CuB significantly inhibited tumor progression in NCG mice without causing obvious side effects in vivo. Taken together, our current work proved that GRP78-FOXM1-KIF20A as a promising pathway for CM therapy, and the traditional medicine CuB as a candidate drug to hinder this pathway.