1.System design for medical waste handling
Chinese Journal of Hospital Administration 2011;27(4):303-306
Medical wastes are posing a growing threat to the environment and human health. A good system design serves as the guarantee for successful and efficient practice of medical waste handling. Laws and decrees have been enacted, which has put medical waste handling onto a legal track.However, this era of building sustainable economy calls for clarifying the meaning and principles, and building a core system for medical waste handling. Such a core system plays a key role not only for minimizing resources consumption and better protecting the environment, but also for the guidance and standardization of medical waste handling.
2.Evaluation the combined effect of three dose reconstruction systems on VMAT dosimetry verification of lung cancer
Yangguang MA ; Rizhen MAI ; Yuntong PEI ; Jinyan HU ; Fanyang KONG ; Xuemin WANG ; Yuexin GUO
Chinese Journal of Radiation Oncology 2021;30(1):76-80
Objective:To evaluate the combined effect of an trajectory log field based(LBF)and two commercial dose reconstruction systems on volume-modulated arc therapy(VMAT)dose verification of lung cancer.Methods:An in-house program was developed to introduce errors in trajectory log of TrueBeam to the origin plan and recalculate the dose of the error plan in treatment planning system(TPS). A total of 18 lung cancer cases treated by two-arc VMAT were selected to perform on LINAC and measured by ArcCheck simultaneously. Then, the reconstructed doses were obtained by 3DVH. The mode of reconstruction was calculated by LFB and Compass. Five of the 18 cases were performed on LINAC two times in four hours and measured by ArcCheck to evaluate the stability of the TrueBeam performance. The 18 plans were recalculated and performed on LINAC with a solid water phantom with 5 cm build-up, 4 cm back scattering thickness and a FC65-G detector in the center. The measured dose by detector was compared with the reconstructed dose by three systems.Results:TheTruebeam performance was stable. For all of the 18 cases, the point dose measured by FC65-G and reconstructed by three systems had a deviation of less than 2% to the TPS calculated. For all of the organs reconstructed by LBF and most organs reconstructed by 3DVH and Compass, the γ pass rate between them and TPS all exceeded 90% under all criteria, as well as the ArcCheck measured results. For all the organ dose difference between reconstructed and TPS, LBF system had the smallest difference, followed by the Compass system except the lung, and the 3DVH had the highest difference.Conclusions:LBF, 3DVH and Compass can reflect the VMAT dose verification results of lung cancer from different perspectives. The combined application of three systems can demonstrate the verification results in an intuitive manner, which is beneficial for subsequent analysis.
3.Internal audit of university affiliated hospitals:status quo and problems analysis
Chinese Journal of Hospital Administration 2018;34(3):252-255
The paper analyzed the status quo and dilemmas of the internal audit of an affiliated hospital of a university in Chongqing, proposing imperative reforms in the governance elements of the affiliated hospital system.These elements cover such aspects as strengthened system construction, value-added transformation, enhanced independent status, improved competency, and innovative methods and technologies.These efforts can help elevate the performance of affiliated hospitals.
4.The impact factors of longitudinal dose fall-off outside the target with helical tomotherapy
Haiyang WANG ; Yifei PI ; Bin HAN ; Fei JIA ; Lele LIU ; Fangna WANG ; Fanyang KONG ; Yuntong PEI ; Jinyan HU ; Yuexin GUO
Chinese Journal of Radiological Medicine and Protection 2021;41(3):183-187
Objective:To study the changing characteristics and impact factors of helical tomotherapy (HT)for longitudinal dose fall-off outside the target, in order to guide the plan junction or pretreatment target and implementation efficiency in clinical.Methods:Eight patients with head and neck tumors admitted to the Department of Oncology Radiotherapy of the First Affiliated Hospital of Zhengzhou University in December 2019 were retrospectively selected as the research objects. The planning target area and dose drop structure were outlined in the head and neck images with a thickness of 1 mm obtained by Siemens SOMATOM Definition AS positioning computerized tomography (CT). Different field widths (FW, 5.0 cm/2.5 cm/1.0 cm) and pitches (0.430/0.287/0.215) were assembled for planning with the same modulation factor (1.8), finest does calculation grid (0.195 cm ×0.195 cm) and other planning parameters were consistent. The plans were designed by different parameters, and the result was analyzed by univariate analysis.Results:The that different pitch curves coincided under the same field width by comparative analyzing, so pitchs had no effect on dose drop. The different field width curves were independent of each other, indicating that the field width had an effect on dose drop in the head and foot direction. The relationship between the longitudinal dose drop speed outside the target and the change of the field width was inversely correlated: the larger field widths meant the slower dose fall-off and the larger penumbra, while the smaller field widths meant the faster fall-off and the smaller penumbra. When the dose fall-off to 50% of the prescribed dose, the distance from the target was approximately equal to half the field widths, and the pitchs had not affect the rate of dose-drop, while the dose at different distances from the target boundary could be calculated by the fitting formulas. The field widths and pitchs had little effect on the CI and HI index of the target, relatively, the target area was best when the field width was 2.5 cm. The total beam-on time gradually decreased with the increase of the field widths and pitches.Conclusions:When segment target therapy needs to consider planning junction, execution efficiency, and controlling longitudinal dose fall-off and considered the execution, the optimal planned parameters such as field widths and pitches could be selected or the target at the junction regions could be adducted according to the longitudinal dose drop formula, so as to achieve the ideal dose distribution.
5. A quantitative evaluation on the image-quality parameters and quality assurance thresholds setting of accelerator on-board imaging system
Jinyan HU ; Yuntong PEI ; Yangguang MA ; Haiyang WANG ; Lele LIU ; Yuexin GUO
Chinese Journal of Radiation Oncology 2019;28(12):919-923
Objective:
To achieve quantitative analysis of image quality parameters and establish warning and action thresholds for the on-board imaging (OBI) system of linear accelerator.
Methods:
The Catphan604 phantom was repeatedly scanned in the Full-Fan and Half-Fan CBCT scanning modes on a Varian EDGE linear accelerator, and the software based on Python language development in-house was utilized to analyze image quality parameters, such as CT number linearity, geometric consistency, slice thickness, spatial resolution, uniformity and low-contrast resolution. The quantitative analysis results of each image quality parameter obtained from 16 times of scanning within 16 months were normalized to the mean and the standard deviations were recorded. A run chart analysis was created to determine the warnings and action thresholds.
Results:
The software built in-house can quantitatively analyze the image parameters of the two scanning modes of OBI system. The low-contrast resolution of Half-Fan was better than that of Full-Fan, whereas the spatial resolution of Full-Fan was superior to that of Half-Fan. One standard deviation (1σ) was set as the warning threshold and 2 standard deviations (2σ) as the action threshold, respectively. The tolerance level of Half-Fan was smaller than that of Full-Fan.
Conclusion
Self-developed software enables quantitative analysis of accelerator image quality parameters, establishes warning and action tolerance of quality assurance and provides guidance for image quality assurance under image-guided radiotherapy specification.
6.Impact factors of dose distribution in the abutment area duing total body irradiation with helical tomotherapy
Haiyang WANG ; Shuaipeng LIU ; Jia HUO ; Bin HAN ; Fangna WANG ; Fei JIA ; Lele LIU ; Fanyang KONG ; Yuntong PEI ; Jinyan HU ; Yuexin GUO
Chinese Journal of Radiological Medicine and Protection 2018;38(12):923-927
Objective To investigate the optimal distance between upper and lower target volumes and their correlated planning parameters by analyzing the dose distribution in the abutment regions during total body irradiation ( TBI) using helical tomotherapy. Methods A total of 10 patients with acute leukemia and with a height around 120 cm were enrolled. All patients were scanned by a Siemens simulation computerized tomography (CT) at a slice thickness of 5 mm. A lead wire was placed 10. 0 cm above the patella as a marker of the separation boundary for the upper and lower target volumes. The delineations of target volumes and organs at risk ( OARs ) were performed in the Varian Eclipse 13. 5 workstation with targets shrunk beyond the separation boundary at different distances. After contours and CT images were transferred to HT workstation, treatment plans were designed with different field width (FW, 5. 0 cm/2. 5 cm/1. 0 cm) and pitch values (0. 430/0. 287) at a modulation factor of 1. 8. All the plans were optimized with a dose calculation grid of 0. 195 cm × 0. 195 cm and identical planning parameters. The correlation between treatment planning parameters and targets shrunk distances were investigated by analyzing the dose distributions in the abutment area. Results The study demonstrated that the dose distributions in the abutment area were influenced only by the field width parameters: when the gap distance between the upper and lower targets was 5. 0 cm, the optimal FW is 5. 0 cm;Similarly when the gap distances were 2. 0 cm and 1. 0 cm, and the optimal FW 2. 5 cm and 1. 0 cm, respectively. In another words, the dose distribution of the abutment region was optimal when the target gap distance was equal to FW. Pitch values did not affect the quality of dose distribution in the abutment region and the overall treatment time ratio. Overall treatment time was inversely related to the FW. Conclusions Consistent target distance and FW is helpful to improve the dose homogeneity in the abutment area during TBI with HT. Appropriate planning parameters is critical to balance the treatment efficacy and efficiency.