1.Single-cell transcriptome analysis reveals the regulatory effects of artesunate on splenic immune cells in polymicrobial sepsis
Jiayun CHEN ; Xueling HE ; Yunmeng BAI ; Jing LIU ; Kwan-Yin WONG ; Lulin XIE ; Qian ZHANG ; Piao LUO ; Peng GAO ; Liwei GU ; Qiuyan GUO ; Guangqing CHENG ; Chen WANG ; Jigang WANG
Journal of Pharmaceutical Analysis 2023;13(7):817-829
Sepsis is characterized by a severe and life-threatening host immune response to polymicrobial infection accompanied by organ dysfunction.Studies on the therapeutic effect and mechanism of immunomod-ulatory drugs on the sepsis-induced hyperinflammatory or immunosuppression states of various im-mune cells remain limited.This study aimed to investigate the protective effects and underlying mechanism of artesunate(ART)on the splenic microenvironment of cecal ligation and puncture-induced sepsis model mice using single-cell RNA sequencing(scRNA-seq)and experimental validations.The scRNA-seq analysis revealed that ART inhibited the activation of pro-inflammatory macrophages recruited during sepsis.ART could restore neutrophils'chemotaxis and immune function in the septic spleen.It inhibited the activation of T regulatory cells but promoted the cytotoxic function of natural killer cells during sepsis.ART also promoted the differentiation and activity of splenic B cells in mice with sepsis.These results indicated that ART could alleviate the inflammatory and/or immunosuppressive states of various immune cells involved in sepsis to balance the immune homeostasis within the host.Overall,this study provided a comprehensive investigation of the regulatory effect of ART on the splenic microenvironment in sepsis,thus contributing to the application of ART as adjunctive therapy for the clinical treatment of sepsis.