1.Analysis of Spatial and Temporal Protein Expression in the Cerebral Cortex after Ischemia-Reperfusion Injury.
Yuan Hao CHEN ; Yung Hsiao CHIANG ; Hsin I MA
Journal of Clinical Neurology 2014;10(2):84-93
BACKGROUND AND PURPOSE: Hypoxia, or ischemia, is a common cause of neurological deficits in the elderly. This study elucidated the mechanisms underlying ischemia-induced brain injury that results in neurological sequelae. METHODS: Cerebral ischemia was induced in male Sprague-Dawley rats by transient ligation of the left carotid artery followed by 60 min of hypoxia. A two-dimensional differential proteome analysis was performed using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to compare changes in protein expression on the lesioned side of the cortex relative to that on the contralateral side at 0, 6, and 24 h after ischemia. RESULTS: The expressions of the following five proteins were up-regulated in the ipsilateral cortex at 24 h after ischemia-reperfusion injury compared to the contralateral (i.e., control) side: aconitase 2, neurotensin-related peptide, hypothetical protein XP-212759, 60-kDa heat-shock protein, and aldolase A. The expression of one protein, dynamin-1, was up-regulated only at the 6-h time point. The level of 78-kDa glucose-regulated protein precursor on the lesioned side of the cerebral cortex was found to be high initially, but then down-regulated by 24 h after the induction of ischemia-reperfusion injury. The expressions of several metabolic enzymes and translational factors were also perturbed soon after brain ischemia. CONCLUSIONS: These findings provide insights into the mechanisms underlying the neurodegenerative events that occur following cerebral ischemia.
Aconitate Hydratase
;
Aged
;
Anoxia
;
Brain Injuries
;
Brain Ischemia
;
Carotid Arteries
;
Cerebral Cortex*
;
Dynamin I
;
Fructose-Bisphosphate Aldolase
;
Geriatrics
;
Heat-Shock Proteins
;
Humans
;
Ischemia
;
Ligation
;
Male
;
Mass Spectrometry
;
Proteome
;
Proteomics
;
Rats, Sprague-Dawley
;
Reperfusion Injury*
2.The effect of ferulic acid ethyl ester on leptin-induced proliferation and migration of aortic smooth muscle cells.
Yung Chieh TSAI ; Yen Mei LEE ; Chih Hsiung HSU ; Sy Ying LEU ; Hsiao Yen CHIANG ; Mao Hsiung YEN ; Pao Yun CHENG
Experimental & Molecular Medicine 2015;47(8):e180-
Leptin is a peptide hormone, which has a central role in the regulation of body weight; it also exerts many potentially atherogenic effects. Ferulic acid ethyl ester (FAEE) has been approved for antioxidant properties. The aim of this study was to investigate whether FAEE can inhibit the atherogenic effects of leptin and the possible molecular mechanism of its action. Both of cell proliferation and migration were measured when the aortic smooth muscle cell (A10 cell) treated with leptin and/or FAEE. Phosphorylated p44/42MAPK, cell cycle-regulatory protein (for example, cyclin D1, p21, p27), beta-catenin and matrix metalloproteinase-9 (MMP-9) proteins levels were also measured. Results demonstrated that leptin (10, 100 ng ml-1) significantly increased the proliferation of cells and the phosphorylation of p44/42MAPK in A10 cells. The proliferative effect of leptin was significantly reduced by the pretreatment of U0126 (0.5 muM), a MEK inhibitor, in A10 cells. Meanwhile, leptin significantly increased the protein expression of cyclin D1, p21, beta-catenin and decreased the expression of p27 in A10 cells. In addition, leptin (10 ng ml-1) significantly increased the migration of A10 cells and the expression of MMP-9 protein. Above effects of leptin were significantly reduced by the pretreatment of FAEE (1 and 10 muM) in A10 cells. In conclusion, FAEE exerts multiple effects on leptin-induced cell proliferation and migration, including the inhibition of p44/42MAPK phosphorylation, cell cycle-regulatory proteins and MMP-9, thereby suggesting that FAEE may be a possible therapeutic approach to the inhibition of obese vascular disease.
Animals
;
Antioxidants/*pharmacology
;
Aorta/cytology/*drug effects
;
Caffeic Acids/*pharmacology
;
Cell Line
;
Cell Movement/*drug effects
;
Cell Proliferation/*drug effects
;
Leptin/*metabolism
;
Matrix Metalloproteinase 9/metabolism
;
Muscle, Smooth, Vascular/cytology/drug effects
;
Myocytes, Smooth Muscle/cytology/*drug effects
;
Rats
;
beta Catenin/metabolism