1.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)
2.Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner.
Hong CHEN ; Gang YANG ; De-En XU ; Yu-Tong DU ; Chao ZHU ; Hua HU ; Li LUO ; Lei FENG ; Wenhui HUANG ; Yan-Yun SUN ; Quan-Hong MA
Neuroscience Bulletin 2025;41(3):374-390
Oligodendrocyte lineage cells, including oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), are essential in establishing and maintaining brain circuits. Autophagy is a conserved process that keeps the quality of organelles and proteostasis. The role of autophagy in oligodendrocyte lineage cells remains unclear. The present study shows that autophagy is required to maintain the number of OPCs/OLs and myelin integrity during brain aging. Inactivation of autophagy in oligodendrocyte lineage cells increases the number of OPCs/OLs in the developing brain while exaggerating the loss of OPCs/OLs with brain aging. Inactivation of autophagy in oligodendrocyte lineage cells impairs the turnover of myelin basic protein (MBP). It causes MBP to accumulate in the cytoplasm as multimeric aggregates and fails to be incorporated into integral myelin, which is associated with attenuated endocytic recycling. Inactivation of autophagy in oligodendrocyte lineage cells impairs myelin integrity and causes demyelination. Thus, this study shows autophagy is required to maintain myelin quality during aging by controlling the turnover of myelin components.
Animals
;
Autophagy/physiology*
;
Oligodendroglia/metabolism*
;
Myelin Sheath/physiology*
;
Aging/pathology*
;
Myelin Basic Protein/metabolism*
;
Cell Lineage/physiology*
;
Mice
;
Oligodendrocyte Precursor Cells
;
Mice, Inbred C57BL
;
Brain/cytology*
;
Cells, Cultured
;
Cell Count
3.Correction to: Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner.
Hong CHEN ; Gang YANG ; De-En XU ; Yu-Tong DU ; Chao ZHU ; Hua HU ; Li LUO ; Lei FENG ; Wenhui HUANG ; Yan-Yun SUN ; Quan-Hong MA
Neuroscience Bulletin 2025;41(3):547-548
4.A multi-center epidemiological study on pneumococcal meningitis in children from 2019 to 2020
Cai-Yun WANG ; Hong-Mei XU ; Gang LIU ; Jing LIU ; Hui YU ; Bi-Quan CHEN ; Guo ZHENG ; Min SHU ; Li-Jun DU ; Zhi-Wei XU ; Li-Su HUANG ; Hai-Bo LI ; Dong WANG ; Song-Ting BAI ; Qing-Wen SHAN ; Chun-Hui ZHU ; Jian-Mei TIAN ; Jian-Hua HAO ; Ai-Wei LIN ; Dao-Jiong LIN ; Jin-Zhun WU ; Xin-Hua ZHANG ; Qing CAO ; Zhong-Bin TAO ; Yuan CHEN ; Guo-Long ZHU ; Ping XUE ; Zheng-Zhen TANG ; Xue-Wen SU ; Zheng-Hai QU ; Shi-Yong ZHAO ; Lin PANG ; Hui-Ling DENG ; Sai-Nan SHU ; Ying-Hu CHEN
Chinese Journal of Contemporary Pediatrics 2024;26(2):131-138
Objective To investigate the clinical characteristics and prognosis of pneumococcal meningitis(PM),and drug sensitivity of Streptococcus pneumoniae(SP)isolates in Chinese children.Methods A retrospective analysis was conducted on clinical information,laboratory data,and microbiological data of 160 hospitalized children under 15 years old with PM from January 2019 to December 2020 in 33 tertiary hospitals across the country.Results Among the 160 children with PM,there were 103 males and 57 females.The age ranged from 15 days to 15 years,with 109 cases(68.1% )aged 3 months to under 3 years.SP strains were isolated from 95 cases(59.4% )in cerebrospinal fluid cultures and from 57 cases(35.6% )in blood cultures.The positive rates of SP detection by cerebrospinal fluid metagenomic next-generation sequencing and cerebrospinal fluid SP antigen testing were 40% (35/87)and 27% (21/78),respectively.Fifty-five cases(34.4% )had one or more risk factors for purulent meningitis,113 cases(70.6% )had one or more extra-cranial infectious foci,and 18 cases(11.3% )had underlying diseases.The most common clinical symptoms were fever(147 cases,91.9% ),followed by lethargy(98 cases,61.3% )and vomiting(61 cases,38.1% ).Sixty-nine cases(43.1% )experienced intracranial complications during hospitalization,with subdural effusion and/or empyema being the most common complication[43 cases(26.9% )],followed by hydrocephalus in 24 cases(15.0% ),brain abscess in 23 cases(14.4% ),and cerebral hemorrhage in 8 cases(5.0% ).Subdural effusion and/or empyema and hydrocephalus mainly occurred in children under 1 year old,with rates of 91% (39/43)and 83% (20/24),respectively.SP strains exhibited complete sensitivity to vancomycin(100% ,75/75),linezolid(100% ,56/56),and meropenem(100% ,6/6).High sensitivity rates were also observed for levofloxacin(81% ,22/27),moxifloxacin(82% ,14/17),rifampicin(96% ,25/26),and chloramphenicol(91% ,21/23).However,low sensitivity rates were found for penicillin(16% ,11/68)and clindamycin(6% ,1/17),and SP strains were completely resistant to erythromycin(100% ,31/31).The rates of discharge with cure and improvement were 22.5% (36/160)and 66.2% (106/160),respectively,while 18 cases(11.3% )had adverse outcomes.Conclusions Pediatric PM is more common in children aged 3 months to under 3 years.Intracranial complications are more frequently observed in children under 1 year old.Fever is the most common clinical manifestation of PM,and subdural effusion/emphysema and hydrocephalus are the most frequent complications.Non-culture detection methods for cerebrospinal fluid can improve pathogen detection rates.Adverse outcomes can be noted in more than 10% of PM cases.SP strains are high sensitivity to vancomycin,linezolid,meropenem,levofloxacin,moxifloxacin,rifampicin,and chloramphenicol.[Chinese Journal of Contemporary Pediatrics,2024,26(2):131-138]
5.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
6.Pathological features and clinicopathological significance of TERT promoter mutation in breast fibroepithelial tumors without definite diagnosis.
Ji Gang WANG ; Yan Jiao HU ; Jing Jing GUAN ; Hong Yun LIU ; Zhong Jun BI ; Long Xiao ZHANG ; Yi Xuan LIU ; Xiao Ming XING
Chinese Journal of Pathology 2023;52(2):153-159
Objective: To investigate the pathological features and the clinicopathological significance of TERT detection in those tumors that were difficult to diagnosis. Methods: A total of 93 cases of fibroepithelial tumors without definite diagnosis were collected from the Affiliated Hospital of Qigndao University between 2013 and 2021. The clinical details such as patients' age and tumor size were collected. All slides were re-reviewed and the pathologic parameters, including stromal cellularity, stromal cell atypia, stromal cell mitoses, and stromal overgrowth were re-interpreted. Sanger sequencing was used to detect TERT promoter status, and immunohistochemistry was performed to detect TERT protein expression. The relationship between TERT promoter mutation as well as protein expression levels and the clinicopathological parameters were also analyzed. Results: The patients' ages ranged from 30 to 71 years (mean of 46 years); the tumor size ranged from 1.2 to 8.0 cm (mean 3.8 cm). These tumors showed the following morphologic features: leafy structures in the background of fibroadenoma, or moderately to severely abundant stromal cells. The interpretations of tumor border status were ambiguous in some cases. The incidence of TERT promoter mutation was high in patients of age≥50 years, tumor size≥4 cm, and stromal overgrowth at ×4 or ×10 objective, and these clinicopathologic features were in favor of diagnosis of phyllodes tumors. TERT protein expression levels was not associated with the above clinicopathologic parameters and its promoter mutation status. Conclusions: The diagnostic difficulty for the breast fibroepithelial tumors is due to the difficulty in recognition of the leafy structures or in those cases with abundant stromal cells. A comprehensive evaluation combined with morphologic characteristics and molecular parameters such as TERT promoter may be helpful for the correct diagnosis and better evaluating recurrence risk.
Humans
;
Adult
;
Middle Aged
;
Aged
;
Female
;
Neoplasms, Fibroepithelial/pathology*
;
Phyllodes Tumor/genetics*
;
Stromal Cells
;
Fibroadenoma/pathology*
;
Breast Neoplasms/pathology*
;
Mutation
;
Telomerase/genetics*
7.Analysis of Chinese Medical Syndrome Features of Ischemic Stroke Based on Similarity of Symptoms Subgroup.
Xiao-Qing LIU ; Run-Shun ZHANG ; Xue-Zhong ZHOU ; Hong ZHOU ; Yu-Yao HE ; Shu HAN ; Jing ZHANG ; Zi-Xin SHU ; Xue-Bin ZHANG ; Jing-Hui JI ; Quan ZHONG ; Li-Li ZHANG ; Zi-Jun MOU ; Li-Yun HE ; Lun-Zhong ZHANG ; Jie YANG ; Yan-Jie HU ; Zheng-Guang CHEN ; Xiao-Zhen LI ; Yan TAN ; Zhan-Feng YAN ; Ke-Gang CAO ; Wei MENG ; He ZHAO ; Wei ZHANG ; Li-Qun ZHONG
Chinese journal of integrative medicine 2023;29(5):441-447
OBJECTIVE:
To derive the Chinese medicine (CM) syndrome classification and subgroup syndrome characteristics of ischemic stroke patients.
METHODS:
By extracting the CM clinical electronic medical records (EMRs) of 7,170 hospitalized patients with ischemic stroke from 2016 to 2018 at Weifang Hospital of Traditional Chinese Medicine, Shandong Province, China, a patient similarity network (PSN) was constructed based on the symptomatic phenotype of the patients. Thereafter the efficient community detection method BGLL was used to identify subgroups of patients. Finally, subgroups with a large number of cases were selected to analyze the specific manifestations of clinical symptoms and CM syndromes in each subgroup.
RESULTS:
Seven main subgroups of patients with specific symptom characteristics were identified, including M3, M2, M1, M5, M0, M29 and M4. M3 and M0 subgroups had prominent posterior circulatory symptoms, while M3 was associated with autonomic disorders, and M4 manifested as anxiety; M2 and M4 had motor and motor coordination disorders; M1 had sensory disorders; M5 had more obvious lung infections; M29 had a disorder of consciousness. The specificity of CM syndromes of each subgroup was as follows. M3, M2, M1, M0, M29 and M4 all had the same syndrome as wind phlegm pattern; M3 and M0 both showed hyperactivity of Gan (Liver) yang pattern; M2 and M29 had similar syndromes, which corresponded to intertwined phlegm and blood stasis pattern and phlegm-stasis obstructing meridians pattern, respectively. The manifestations of CM syndromes often appeared in a combination of 2 or more syndrome elements. The most common combination of these 7 subgroups was wind-phlegm. The 7 subgroups of CM syndrome elements were specifically manifested as pathogenic wind, pathogenic phlegm, and deficiency pathogens.
CONCLUSIONS
There were 7 main symptom similarity-based subgroups in ischemic stroke patients, and their specific characteristics were obvious. The main syndromes were wind phlegm pattern and hyperactivity of Gan yang pattern.
Humans
;
Syndrome
;
Ischemic Stroke
;
Medicine, Chinese Traditional
;
Liver
;
Phenotype
8.To compare the efficacy and incidence of severe hematological adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia.
Xiao Shuai ZHANG ; Bing Cheng LIU ; Xin DU ; Yan Li ZHANG ; Na XU ; Xiao Li LIU ; Wei Ming LI ; Hai LIN ; Rong LIANG ; Chun Yan CHEN ; Jian HUANG ; Yun Fan YANG ; Huan Ling ZHU ; Ling PAN ; Xiao Dong WANG ; Gui Hui LI ; Zhuo Gang LIU ; Yan Qing ZHANG ; Zhen Fang LIU ; Jian Da HU ; Chun Shui LIU ; Fei LI ; Wei YANG ; Li MENG ; Yan Qiu HAN ; Li E LIN ; Zhen Yu ZHAO ; Chuan Qing TU ; Cai Feng ZHENG ; Yan Liang BAI ; Ze Ping ZHOU ; Su Ning CHEN ; Hui Ying QIU ; Li Jie YANG ; Xiu Li SUN ; Hui SUN ; Li ZHOU ; Ze Lin LIU ; Dan Yu WANG ; Jian Xin GUO ; Li Ping PANG ; Qing Shu ZENG ; Xiao Hui SUO ; Wei Hua ZHANG ; Yuan Jun ZHENG ; Qian JIANG
Chinese Journal of Hematology 2023;44(9):728-736
Objective: To analyze and compare therapy responses, outcomes, and incidence of severe hematologic adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia (CML) . Methods: Data of patients with chronic phase CML diagnosed between January 2006 and November 2022 from 76 centers, aged ≥18 years, and received initial flumatinib or imatinib therapy within 6 months after diagnosis in China were retrospectively interrogated. Propensity score matching (PSM) analysis was performed to reduce the bias of the initial TKI selection, and the therapy responses and outcomes of patients receiving initial flumatinib or imatinib therapy were compared. Results: A total of 4 833 adult patients with CML receiving initial imatinib (n=4 380) or flumatinib (n=453) therapy were included in the study. In the imatinib cohort, the median follow-up time was 54 [interquartile range (IQR), 31-85] months, and the 7-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.2%, 88.4%, 78.3%, and 63.0%, respectively. The 7-year FFS, PFS, and OS rates were 71.8%, 93.0%, and 96.9%, respectively. With the median follow-up of 18 (IQR, 13-25) months in the flumatinib cohort, the 2-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.4%, 86.5%, 58.4%, and 46.6%, respectively. The 2-year FFS, PFS, and OS rates were 80.1%, 95.0%, and 99.5%, respectively. The PSM analysis indicated that patients receiving initial flumatinib therapy had significantly higher cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) and higher probabilities of FFS than those receiving the initial imatinib therapy (all P<0.001), whereas the PFS (P=0.230) and OS (P=0.268) were comparable between the two cohorts. The incidence of severe hematologic adverse events (grade≥Ⅲ) was comparable in the two cohorts. Conclusion: Patients receiving initial flumatinib therapy had higher cumulative incidences of therapy responses and higher probability of FFS than those receiving initial imatinib therapy, whereas the incidence of severe hematologic adverse events was comparable between the two cohorts.
Adult
;
Humans
;
Adolescent
;
Imatinib Mesylate/adverse effects*
;
Incidence
;
Antineoplastic Agents/adverse effects*
;
Retrospective Studies
;
Pyrimidines/adverse effects*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Treatment Outcome
;
Benzamides/adverse effects*
;
Leukemia, Myeloid, Chronic-Phase/drug therapy*
;
Aminopyridines/therapeutic use*
;
Protein Kinase Inhibitors/therapeutic use*
9. Treatment advice of small molecule antiviral drugs for elderly COVID-19
Min PAN ; Shuang CHANG ; Xiao-Xia FENG ; Guang-He FEI ; Jia-Bin LI ; Hua WANG ; Du-Juan XU ; Chang-Hui WANG ; Yan SUN ; Xiao-Yun FAN ; Tian-Jing ZHANG ; Wei WEI ; Ling-Ling ZHANG ; Jim LI ; Fei-Hu CHEN ; Xiao-Ming MENG ; Hong-Mei ZHAO ; Min DAI ; Yi XIANG ; Meng-Shu CAO ; Xiao-Yang CHEN ; Xian-Wei YE ; Xiao-Wen HU ; Ling JIANG ; Yong-Zhong WANG ; Hao LIU ; Hai-Tang XIE ; Ping FANG ; Zhen-Dong QIAN ; Chao TANG ; Gang YANG ; Xiao-Bao TENG ; Chao-Xia QIAN ; Guo-Zheng DING
Chinese Pharmacological Bulletin 2023;39(3):425-430
COVID-19 has been prevalent for three years. The virulence of SARS-CoV-2 is weaken as it mutates continuously. However, elderly patients, especially those with underlying diseases, are still at high risk of developing severe infections. With the continuous study of the molecular structure and pathogenic mechanism of SARS-CoV-2, antiviral drugs for COVID-19 have been successively marketed, and these anti-SARS-CoV-2 drugs can effectively reduce the severe rate and mortality of elderly patients. This article reviews the mechanism, clinical medication regimens, drug interactions and adverse reactions of five small molecule antiviral drugs currently approved for marketing in China, so as to provide advice for the clinical rational use of anti-SARS-CoV-2 in the elderly.
10.Transcriptome Analysis of Schwann Cells at Various Stages of Myelination Implicates Chromatin Regulator Sin3A in Control of Myelination Identity.
Bin ZHANG ; Wenfeng SU ; Junxia HU ; Jinghui XU ; Parizat ASKAR ; Shuangxi BAO ; Songlin ZHOU ; Gang CHEN ; Yun GU
Neuroscience Bulletin 2022;38(7):720-740
Enhancing remyelination after injury is of utmost importance for optimizing the recovery of nerve function. While the formation of myelin by Schwann cells (SCs) is critical for the function of the peripheral nervous system, the temporal dynamics and regulatory mechanisms that control the progress of the SC lineage through myelination require further elucidation. Here, using in vitro co-culture models, gene expression profiling of laser capture-microdissected SCs at various stages of myelination, and multilevel bioinformatic analysis, we demonstrated that SCs exhibit three distinct transcriptional characteristics during myelination: the immature, promyelinating, and myelinating states. We showed that suppressor interacting 3a (Sin3A) and 16 other transcription factors and chromatin regulators play important roles in the progress of myelination. Sin3A knockdown in the sciatic nerve or specifically in SCs reduced or delayed the myelination of regenerating axons in a rat crushed sciatic nerve model, while overexpression of Sin3A greatly promoted the remyelination of axons. Further, in vitro experiments revealed that Sin3A silencing inhibited SC migration and differentiation at the promyelination stage and promoted SC proliferation at the immature stage. In addition, SC differentiation and maturation may be regulated by the Sin3A/histone deacetylase2 (HDAC2) complex functionally cooperating with Sox10, as demonstrated by rescue assays. Together, these results complement the recent genome and proteome analyses of SCs during peripheral nerve myelin formation. The results also reveal a key role of Sin3A-dependent chromatin organization in promoting myelinogenic programs and SC differentiation to control peripheral myelination and repair. These findings may inform new treatments for enhancing remyelination and nerve regeneration.
Animals
;
Axons
;
Chromatin/metabolism*
;
Gene Expression Profiling
;
Myelin Sheath/metabolism*
;
Nerve Regeneration/physiology*
;
Rats
;
Schwann Cells/metabolism*
;
Sciatic Nerve/injuries*

Result Analysis
Print
Save
E-mail