1.Epidemiological Surveillance:Genetic Diversity of Rotavirus Group A in the Pearl River Delta,Guangdong,China in 2019
Ying Jie JIANG ; Dan LIANG ; Li WANG ; Yun XIAO ; Feng Yu LIANG ; Xia Bi KE ; Juan SU ; Hong XIAO ; Tao WANG ; Min ZOU ; Jian Hong LI ; Wen Chang KE
Biomedical and Environmental Sciences 2024;37(3):278-293
Objective This study aimed to understand the epidemic status and phylogenetic relationships of rotavirus group A(RVA)in the Pearl River Delta region of Guangdong Province,China. Methods This study included individuals aged 28 days-85 years.A total of 706 stool samples from patients with acute gastroenteritis collected between January 2019 and January 2020 were analyzed for 17 causative pathogens,including RVA,using a Gastrointestinal Pathogen Panel,followed by genotyping,virus isolation,and complete sequencing to assess the genetic diversity of RVA. Results The overall RVA infection rate was 14.59%(103/706),with an irregular epidemiological pattern.The proportion of co-infection with RVA and other pathogens was 39.81%(41/103).Acute gastroenteritis is highly prevalent in young children aged 0-1 year,and RVA is the key pathogen circulating in patients 6-10 months of age with diarrhea.G9P[8](58.25%,60/103)was found to be the predominant genotype in the RVA strains,and the 41 RVA-positive strains that were successfully sequenced belonged to three different RVA genotypes in the phylogenetic analysis.Recombination analysis showed that gene reassortment events,selection pressure,codon usage bias,gene polymorphism,and post-translational modifications(PTMs)occurred in the G9P[8]and G3P[8]strains. Conclusion This study provides molecular evidence of RVA prevalence in the Pearl River Delta region of China,further enriching the existing information on its genetics and evolutionary characteristics and suggesting the emergence of genetic diversity.Strengthening the surveillance of genotypic changes and gene reassortment in RVA strains is essential for further research and a better understanding of strain variations for further vaccine development.
2.Differential component analysis between Fructus Tritici Levis and Triticum aestivum based on qualitative and quantitative methods
Xuejiao LI ; Yu HU ; Yun CHEN ; Juan SHANG ; Zhenyang LI ; Yunhua FENG ; Jiandong ZOU ; Weifeng YAO ; Su LU ; Meijuan XU
China Pharmacy 2024;35(11):1296-1302
OBJECTIVE To analyze the compositional differences between Fructus Tritici Levis and Triticum aestivum, and to provide reference for identification and quality control of both. METHODS Twenty batches of Fructus Tritici Levis and three batches of T. aestivum were collected, and their fingerprints were acquired by high-performance liquid chromatography and the similarities were evaluated by the Evaluation System of Similarity of Chromatographic Fingerprints of Traditional Chinese Medicine (2012 version). Cluster analysis (CA), principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were performed to analyze the difference of Fructus Tritici Levis and T. aestivum from different regions, and the differential components were screened. The contents of the six identified components in Fructus Tritici Levis and T. aestivum were determined. RESULTS The similarities of the fingerprints of Fructus Tritici Levis ranged from 0.928 to 0.996, and the relative similarities of T. aestivum with Fructus Tritici Levis ranged from 0.761 to 0.773. A total of 19 common peaks were calibrated, and six components including linolenic acid, linoleic acid, 5-heptadecylresorcinol, 5-nonadodecylresorcinol, 5- heneicosylresorcinol, and 5-tricosylresorcinol were identified. The results of CA and PCA showed that Fructus Tritici Levis and T. aestivum could be clearly distinguished; the distribution of Fructus Tritici Levis from Anhui province was relatively concentrated. The results of OPLS-DA showed that linolenic acid, linoleic acid, and other six unknown compounds were the differential components between Fructus Tritici Levis and T. aestivum. The average contents of the six identified components in Fructus Tritici Levis were 0.100 9, 1.094 0, 0.005 1, 0.030 9, 0.098 2,and 0.024 8 mg/g, respectively; the contents of linolenic acid and linoleic acid in Fructus Tritici Levis were significantly higher than those in T. aestivum (P<0.05).CONCLUSIONS The established qualitative and quantitative methods are simple and reliable, and can be used for the identification and quality evaluation of Fructus Tritici Levis and T. aestivum. The identified differential components, such as linolenic acid and linoleic acid, can also provide clues for the differentiation and pharmacological study of Fructus Tritici Levis and T. aestivum.
3.Differential component analysis between Fructus Tritici Levis and Triticum aestivum based on qualitative and quantitative methods
Xuejiao LI ; Yu HU ; Yun CHEN ; Juan SHANG ; Zhenyang LI ; Yunhua FENG ; Jiandong ZOU ; Weifeng YAO ; Su LU ; Meijuan XU
China Pharmacy 2024;35(11):1296-1302
OBJECTIVE To analyze the compositional differences between Fructus Tritici Levis and Triticum aestivum, and to provide reference for identification and quality control of both. METHODS Twenty batches of Fructus Tritici Levis and three batches of T. aestivum were collected, and their fingerprints were acquired by high-performance liquid chromatography and the similarities were evaluated by the Evaluation System of Similarity of Chromatographic Fingerprints of Traditional Chinese Medicine (2012 version). Cluster analysis (CA), principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were performed to analyze the difference of Fructus Tritici Levis and T. aestivum from different regions, and the differential components were screened. The contents of the six identified components in Fructus Tritici Levis and T. aestivum were determined. RESULTS The similarities of the fingerprints of Fructus Tritici Levis ranged from 0.928 to 0.996, and the relative similarities of T. aestivum with Fructus Tritici Levis ranged from 0.761 to 0.773. A total of 19 common peaks were calibrated, and six components including linolenic acid, linoleic acid, 5-heptadecylresorcinol, 5-nonadodecylresorcinol, 5- heneicosylresorcinol, and 5-tricosylresorcinol were identified. The results of CA and PCA showed that Fructus Tritici Levis and T. aestivum could be clearly distinguished; the distribution of Fructus Tritici Levis from Anhui province was relatively concentrated. The results of OPLS-DA showed that linolenic acid, linoleic acid, and other six unknown compounds were the differential components between Fructus Tritici Levis and T. aestivum. The average contents of the six identified components in Fructus Tritici Levis were 0.100 9, 1.094 0, 0.005 1, 0.030 9, 0.098 2,and 0.024 8 mg/g, respectively; the contents of linolenic acid and linoleic acid in Fructus Tritici Levis were significantly higher than those in T. aestivum (P<0.05).CONCLUSIONS The established qualitative and quantitative methods are simple and reliable, and can be used for the identification and quality evaluation of Fructus Tritici Levis and T. aestivum. The identified differential components, such as linolenic acid and linoleic acid, can also provide clues for the differentiation and pharmacological study of Fructus Tritici Levis and T. aestivum.
4.Establish a Graded Method to Avoid HLA Class I Antibodies Cor-responding Antigen and Combining HLAMatchmaker Application in Improving the CCI Value after Platelet Transfusion for Patients with IPTR
Su-Qing GAO ; Yun-Ping XU ; Chang-Ru LUO ; Da-Cheng LI ; Long PEN ; Tong LIU ; Qiong-Cai ZOU
Journal of Experimental Hematology 2024;32(1):242-249
Objective:To establish a graded method to avoid mean fluorescence intensity(MFI)threshold of HLA Class I antibodies corresponding antigen,and the HLAMatchmaker program has been used to select the minimum mismatch value of donor-patient epitopes.Evaluate the application value of combining both methods in selecting HLA compatible platelets(PTL)for patients with immune platelet transfusion failure(IPTR)in improving platelet the corrected count increment(CCI).Methods:A total 7 807 PLT cross-matching compatible were performed by the solid-phase red cell adherence(SPRCA)method for 51 IPTR patients.The Luminex single antigen flow cytometry was used to detect HLA Class I antibodies in patients,and detected the MFI value for different specificity antigens of HLA Class I antibodies,was graded into strong positive group(MFI>4 000,level 1),medium positive group(1 000<MFI 4 000,2),weak positive group(500<MFI≤1 000,3),and one negative control group(MFI≤500).The results of 7 807 SPRCA their negative/positive reaction wells were enrolled and statistically analyzed in different grades and the four groups,the statistical differences between the four groups were compared.Multiple applications for the select HLA Class I compatible donor events were made for patients in two cases,and HLAMatchmaker program was used to calculate the number of HLA Class I epitopes mismatches between the donors and patients.The donor with the minimum number of epitopes mismatches was selected,while avoiding the corresponding antigens of HLA Class I antibodies in levels 1 and 2,the provision of HLA compatible platelets for IPTR.After the transfusions,the CCI value of the platelet transfusion efficacy evaluation index was calculated,and the clinical evaluation of the transfusion effect was obtained through statistical analysis.Results:There were statistically significant differences in the positive results of SPRCA immunoassay among the strong positive group,medium positive group,and weak positive group of 51 IPTR patients with different specific of HLA-I class antibodies and corresponding antigens(all P<0.001).The positive results showed a range from high to low,with strong positive group>medium positive group>weak positive group.There were a statistical difference among between the strongly positive or moderately positive groups and the negative control group(P<0.001).There was no statistical difference between the weakly positive group and the negative control group(P>0.05).The strong positive group was set as the corresponding specific HLA Class I site corresponding antigen grade 1 avoidance threshold,the medium positive group as the grade 2 avoidance thresholds,and the weak positive group as the grade 3 avoidance threshold.In the case of donor platelet shortage,it is not necessary to avoid the weak positive group.Avoiding the strategy of donor antigens and HLAMatchmaker program scores≤7 corresponding to HLA Class I antibodies of levels 1 and 2,with CCI values>4.5 × 109/L within 24 hours,can obtain effective clinical platelet transfusion conclusions.Conclusion:When selecting HLA Class I compatible donors for IPTR patients,the grading avoids HLA Class I antibodies corresponding to donor antigens,and the donor selection strategy with the minimum scores of HLAMatchmaker program is comprehensively selected.The negative result confirmed by platelet cross-matching experiments has certain practical application value for improving platelet count in IPTR patients.
5.CiteSpace knowledge map of research hotspots and frontiers of traditional Chinese medicine intervention in psoriasis in recent ten years.
Hui-Qin ZOU ; Xue-Yan ZHEN ; Jun-Tang YAN ; Hui-Shang FENG ; Jian-Qiu LU ; Sheng-Yun DING ; Su-Mei HAO ; Ying-Hua HUANG ; Rong-Ting XU
China Journal of Chinese Materia Medica 2023;48(11):3110-3117
This study aimed to investigate the development status of traditional Chinese medicine(TCM) intervention in psoriasis in recent ten years, analyze the research hotspots, and summarize the development trends to provide reference materials for scholars in this field. Taking the available literature related to the field of TCM intervention in psoriasis as the research object, the trends, contents, and source publications were statistically analyzed based on bibliometrics. The research cooperation and co-occurrence of keywords in this field were studied by the knowledge map analysis method based on CiteSpace. The total number of Chinese papers was 2 993 and English papers 285. In terms of publication trend, the annual publication of English papers was low but showed an obvious upward trend, while the increase in Chinese papers fluctuated and tended to be flat. In terms of the content of Chinese papers published, TCM ranked first according to the discipline(2 415). In English papers, the number of publications in pharmacology and pharmaceutical science was the highest(87). Literature source analysis showed that the Chinese and English journals with the most publications were China Journal of Traditional Chinese Medicine and Pharmacy and Evidence Based Complementary and Alternative Medicine, respectively. Beijing University of Chinese Medicine published the most dissertations in China(99). The authors with the most publications in Chinese and English were LI Bin(Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine) and LU Chuan-jian(Guangdong Hospital of Traditional Chinese Medicine). As revealed by the CiteSpace analysis of the research cooperation network, there were four mature and stable core teams in this field, but the cooperation intensity between different teams was weak. According to the keywords co-occurrence knowledge graph constructed by CiteSpace, the current hot keywords in this field are as follows: psoriasis, blood-heat syndrome, blood-stasis syndrome, fire needle, blood-dryness type, imiquimod, TCM bath, etiology and pathogenesis, cytokines, cupping therapy, etc. In summary, Chinese scholars have conducted active exploration and research in the field of TCM intervention in psoriasis in recent ten years. The overall development trend is good, and the breadth and depth of the research are constantly extending. It is suggested that relevant research should be free from discipline restrictions and strive for interdisciplinary integration.
Humans
;
Medicine, Chinese Traditional
;
Psoriasis/drug therapy*
6.Hepatic retinaldehyde deficiency is involved in diabetes deterioration by enhancing PCK1- and G6PC-mediated gluconeogenesis.
Hanyu YANG ; Mengxiang SU ; Ming LIU ; Yun SHENG ; Liang ZHU ; Lu YANG ; Ruijing MU ; Jianjun ZOU ; Xiaodong LIU ; Li LIU
Acta Pharmaceutica Sinica B 2023;13(9):3728-3743
Type 2 diabetes (T2D) is often accompanied with an induction of retinaldehyde dehydrogenase 1 (RALDH1 or ALDH1A1) expression and a consequent decrease in hepatic retinaldehyde (Rald) levels. However, the role of hepatic Rald deficiency in T2D progression remains unclear. In this study, we demonstrated that reversing T2D-mediated hepatic Rald deficiency by Rald or citral treatments, or liver-specific Raldh1 silencing substantially lowered fasting glycemia levels, inhibited hepatic glucogenesis, and downregulated phosphoenolpyruvate carboxykinase 1 (PCK1) and glucose-6-phosphatase (G6PC) expression in diabetic db/db mice. Fasting glycemia and Pck1/G6pc mRNA expression levels were strongly negatively correlated with hepatic Rald levels, indicating the involvement of hepatic Rald depletion in T2D deterioration. A similar result that liver-specific Raldh1 silencing improved glucose metabolism was also observed in high-fat diet-fed mice. In primary human hepatocytes and oleic acid-treated HepG2 cells, Rald or Rald + RALDH1 silencing resulted in decreased glucose production and downregulated PCK1/G6PC mRNA and protein expression. Mechanistically, Rald downregulated direct repeat 1-mediated PCK1 and G6PC expression by antagonizing retinoid X receptor α, as confirmed by luciferase reporter assays and molecular docking. These results highlight the link between hepatic Rald deficiency, glucose dyshomeostasis, and the progression of T2D, whilst also suggesting RALDH1 as a potential therapeutic target for T2D.
7.Research progress on the regulation and mechanism of reactive oxygen species on tumor immune checkpoints
Xiao-feng LI ; Yuan WANG ; Shu-ying WEI ; Wei ZOU ; Xin LUO ; Jia-yi LI ; Zhong-hong WEI ; Su-yun YU ; Xiao-man LI ; Wen-xing CHEN ; Ai-yun WANG ; Yang ZHAO ; Yin LU ; Yuan-yuan WU
Acta Pharmaceutica Sinica 2022;57(6):1565-1573
Immune checkpoints (ICs) are immunosuppressive molecules expressed on immune cells, which can regulate immune cells' activation. Immune checkpoint inhibitors (ICIs) which can block the interaction of immune checkpoints and their ligands, improve the cytotoxic effect of the immune system on tumor cells. Immunotherapy such as employing ICIs has gradually become a conventional therapeutic strategy for cancer treatment. However, the low response rate and the emergence of drug resistance have seriously affected the clinical efficacy of ICIs. Reactive oxygen species (ROS) are electronic reduction products of active oxygen, as well as natural by-products of cell metabolism, which can be used as regulators of intercellular signals. Tumor microenvironment (TME) is often in the state of oxidative stress (OS), which is the imbalance between oxidative system and antioxidant system. ROS can affect the interaction with its ligands by regulating the expression and activity of immune checkpoints in TME, thus affecting the anti-tumor effect of immune cells. Accumulating studies have shown that ROS could regulate tumor immune checkpoints through several pathways. Due to different types and stages of tumor, it would be clinical beneficial to understand the mechanistic link of ROS on tumor immune checkpoint, and choose appropriate ROS regulators combined with immune checkpoint inhibitors to maximize anti-tumor effects. This article reviews the common metabolic sources and characteristics of ROS, the regulatory effect and mechanism of ROS on tumor immune checkpoints and its therapeutic application.
8. Investigation of potential pharmacodynamic substances and mechanism of Qingxin-zishen prescription decoction in treatment of menopause syndrome based on HPLC-Q-TOF-MS/MS and network pharmacology
Qian YAO ; Yun CHEN ; Wenzheng JU ; Jiandong ZOU ; Su LU ; Meijuan XU ; Qian YAO ; Juan SHANG ; Xiaoyun XI ; Ying CHEN ; Xiao GU
Chinese Journal of Clinical Pharmacology and Therapeutics 2022;27(5):481-497
AIM: To analyze the chemical ingredients of Qingxin-zishen prescription decoction (QZPD) and predict its main pharmacodynamic substances and mechanism in the prevention and treatment of menopause syndrome (MPS) with the help of high performance liquid chromatography-quadrupole-time of flight mass spectrometry (HPLC-Q-TOF/MS) combined with network pharmacology. METHODS: The chemical ingredients of QZPD were identified after analyzing the retention time, exact mass, secondary mass spectrometry fragmentation and other information obtained from HPLC-Q-TOF/MS and comparing them with the established chemical ingredients database and the literatures. The targets of ingredients in QZPD were predicted by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and SwissTargetPrediction database. The disease targets of MPS were obtained through Online Mendelian Inheritance in Man (OMIM) and GeneCards Database. Gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of potential targets were analyzed with the Metascape database. Cytoscape 3.7.2 software was used to construct the network of active components-key targets-pathways. AutoDockTools 4.2.5 software was applied in the molecular docking verification between the key active components and key targets. RESULTS: A total of 83 components were identified in QZPD and 847 drug targets were predicted. After intersection them with 3 050 disease targets, 395 common targets were obtained. After network topology analysis, 74 key targets were obtained, involving mitogen-activated protein kinase (MAPK), phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt), transforming growth factor-β (TGF-β) and other signaling pathways. Molecular docking analysis results indicated that 23 key active components, such as berberine, epiberberine, coptisine, geissoschizine methyl ether, liensinine, norcoclaurine, palmatine, quercetin, and luteolin, had good binding activity with several of the key targets. CONCLUSION: This study preliminarily identifies the potential effective chemical ingredients of QZPD, predicts its targets in the prevention and treatment of MPS, which provides supporting information for the further study of the pharmacodynamic substances and mechanisms of QZPD.
9.The role and mechanism of autophagy in lipopolysaccharide-induced inflammatory response of A549 cells.
Jia SHI ; Hui-Xian TAO ; Yan GUO ; Yun-Su ZOU ; Mu-Zi WANG ; Zhi-Tao LU ; Yi-Fang DING ; Wei-Dong XU ; Xiao-Guang ZHOU
Chinese Journal of Contemporary Pediatrics 2022;24(10):1161-1170
OBJECTIVES:
To study the role and mechanism of autophagy in lipopolysaccharide (LPS)-induced inflammatory response of human alveolar epithelial A549 cells.
METHODS:
A549 cells were stimulated with LPS to establish a cell model of inflammatory response, and were then grouped (n=3 each) by concentration (0, 1, 5, and 10 μg/mL) and time (0, 4, 8, 12, and 24 hours). The A549 cells were treated with autophagy inhibitor 3-methyladenine (3-MA) to be divided into four groups (n=3 each): control, LPS, 3-MA, and 3-MA+LPS. The A549 cells were treated with autophagy agonist rapamycin (RAPA) to be divided into four groups (n=3 each): control, LPS, RAPA, and RAPA+LPS. The A549 cells were transfected with the Toll-like receptor 4 (TLR4) overexpression plasmid to be divided into four groups (n=3 each): TLR4 overexpression control, TLR4 overexpression, TLR4 overexpression control+LPS, and TLR4 overexpression+LPS. The A549 cells were transfected with TLR4 siRNA to be divided into four groups (n=3 each): TLR4 silencing control,TLR4 silencing, TLR4 silencing control+LPS, and TLR4 silencing+LPS. CCK-8 assay was used to measure cell viability. Western blot was used to measure the protein expression levels of inflammatory indicators (NLRP3, Caspase-1, and ASC), autophagic indicators (LC3B, Beclin-1, and P62), and TLR4.
RESULTS:
After stimulation with 1 μg/mL LPS for 12 hours, the levels of inflammatory indicators (NLRP3, Caspase-1, and ASC), autophagic indicators (LC3B, Beclin-1, and P62), and TLR4 increased and reached the peak (P<0.05). Compared with the LPS group, the 3-MA+LPS group had reduced expression of autophagy-related proteins and increased expression of inflammation-related proteins and TLR4, while the RAPA+LPS group had increased expression of autophagy-related proteins and reduced inflammation-related proteins and TLR4 (P<0.05). The TLR4 overexpression+LPS group had reduced autophagy-related proteins and increased inflammation-related proteins compared with the TLR4 overexpression control+LPS group, and the TLR4 silencing+LPS group had increased autophagy-related proteins and reduced inflammation-related proteins compared with the TLR4 silencing control+LPS group (P<0.05).
CONCLUSIONS
In the LPS-induced inflammatory response of human alveolar epithelial A549 cells, autophagic flux has a certain protective effect on A549 cells. TLR4-mediated autophagic flux negatively regulates the LPS-induced inflammatory response of A549 cells.
Humans
;
A549 Cells
;
Autophagy
;
Beclin-1/metabolism*
;
Caspase 1/metabolism*
;
Inflammation
;
Lipopolysaccharides/pharmacology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Toll-Like Receptor 4/metabolism*
10.Oxygen reserve index: a new parameter for oxygen therapy.
Chinese Journal of Contemporary Pediatrics 2022;24(11):1275-1280
Oxygen reserve index (ORI) is a novel dimensionless index used for noninvasive, real-time, and continuous monitoring of oxygenation, and ORI value ranges from 0 to 1, which reflects the range of 100-200 mmHg for arterial partial pressure of oxygen. ORI combined with pulse oximetry may help to accurately adjust the concentration of inspired oxygen and prevent hyperoxemia and hypoxemia. ORI is suitable for various clinical situations, and the medical staff should master this novel parameter and use it properly to assess the oxygenation of patients. In addition, several limitations of ORI should be noticed during clinical application.
Humans
;
Oxygen
;
Blood Gas Analysis
;
Oxygen Inhalation Therapy
;
Oximetry
;
Hypoxia/therapy*

Result Analysis
Print
Save
E-mail