1.Outcomes of Deferring Percutaneous Coronary Intervention Without Physiologic Assessment for Intermediate Coronary Lesions
Jihoon KIM ; Seong-Hoon LIM ; Joo-Yong HAHN ; Jin-Ok JEONG ; Yong Hwan PARK ; Woo Jung CHUN ; Ju Hyeon OH ; Dae Kyoung CHO ; Yu Jeong CHOI ; Eul-Soon IM ; Kyung-Heon WON ; Sung Yun LEE ; Sang-Wook KIM ; Ki Hong CHOI ; Joo Myung LEE ; Taek Kyu PARK ; Jeong Hoon YANG ; Young Bin SONG ; Seung-Hyuk CHOI ; Hyeon-Cheol GWON
Korean Circulation Journal 2025;55(3):185-195
Background and Objectives:
Outcomes of deferring percutaneous coronary intervention (PCI) without invasive physiologic assessment for intermediate coronary lesions is uncertain.We sought to compare long-term outcomes between medical treatment and PCI of intermediate lesions without invasive physiologic assessment.
Methods:
A total of 899 patients with intermediate coronary lesions between 50% and 70% diameter-stenosis were randomized to the conservative group (n=449) or the aggressive group (n=450). For intermediate lesions, PCI was performed in the aggressive group, but was deferred in the conservative group. The primary endpoint was major adverse cardiac events (MACE, a composite of all-cause death, myocardial infarction [MI], or ischemia-driven any revascularization) at 3 years.
Results:
The number of treated lesions per patient was 0.8±0.9 in the conservative group and 1.7±0.9 in the aggressive group (p=0.001). At 3 years, the conservative group had a significantly higher incidence of MACE than the aggressive group (13.8% vs. 9.3%; hazard ratio [HR], 1.49; 95% confidence interval [CI], 1.00–2.21; p=0.049), mainly driven by revascularization of target intermediate lesion (6.5% vs. 1.1%; HR, 5.69; 95% CI, 2.20–14.73;p<0.001). Between 1 and 3 years after the index procedure, compared to the aggressive group, the conservative group had significantly higher incidence of cardiac death or MI (3.2% vs.0.7%; HR, 4.34; 95% CI, 1.24–15.22; p=0.022) and ischemia-driven any revascularization.
Conclusions
For intermediate lesions, medical therapy alone, guided only by angiography, was associated with a higher risk of MACE at 3 years compared with performing PCI, mainly due to increased revascularization.
2.Outcomes of Deferring Percutaneous Coronary Intervention Without Physiologic Assessment for Intermediate Coronary Lesions
Jihoon KIM ; Seong-Hoon LIM ; Joo-Yong HAHN ; Jin-Ok JEONG ; Yong Hwan PARK ; Woo Jung CHUN ; Ju Hyeon OH ; Dae Kyoung CHO ; Yu Jeong CHOI ; Eul-Soon IM ; Kyung-Heon WON ; Sung Yun LEE ; Sang-Wook KIM ; Ki Hong CHOI ; Joo Myung LEE ; Taek Kyu PARK ; Jeong Hoon YANG ; Young Bin SONG ; Seung-Hyuk CHOI ; Hyeon-Cheol GWON
Korean Circulation Journal 2025;55(3):185-195
Background and Objectives:
Outcomes of deferring percutaneous coronary intervention (PCI) without invasive physiologic assessment for intermediate coronary lesions is uncertain.We sought to compare long-term outcomes between medical treatment and PCI of intermediate lesions without invasive physiologic assessment.
Methods:
A total of 899 patients with intermediate coronary lesions between 50% and 70% diameter-stenosis were randomized to the conservative group (n=449) or the aggressive group (n=450). For intermediate lesions, PCI was performed in the aggressive group, but was deferred in the conservative group. The primary endpoint was major adverse cardiac events (MACE, a composite of all-cause death, myocardial infarction [MI], or ischemia-driven any revascularization) at 3 years.
Results:
The number of treated lesions per patient was 0.8±0.9 in the conservative group and 1.7±0.9 in the aggressive group (p=0.001). At 3 years, the conservative group had a significantly higher incidence of MACE than the aggressive group (13.8% vs. 9.3%; hazard ratio [HR], 1.49; 95% confidence interval [CI], 1.00–2.21; p=0.049), mainly driven by revascularization of target intermediate lesion (6.5% vs. 1.1%; HR, 5.69; 95% CI, 2.20–14.73;p<0.001). Between 1 and 3 years after the index procedure, compared to the aggressive group, the conservative group had significantly higher incidence of cardiac death or MI (3.2% vs.0.7%; HR, 4.34; 95% CI, 1.24–15.22; p=0.022) and ischemia-driven any revascularization.
Conclusions
For intermediate lesions, medical therapy alone, guided only by angiography, was associated with a higher risk of MACE at 3 years compared with performing PCI, mainly due to increased revascularization.
3.Outcomes of Deferring Percutaneous Coronary Intervention Without Physiologic Assessment for Intermediate Coronary Lesions
Jihoon KIM ; Seong-Hoon LIM ; Joo-Yong HAHN ; Jin-Ok JEONG ; Yong Hwan PARK ; Woo Jung CHUN ; Ju Hyeon OH ; Dae Kyoung CHO ; Yu Jeong CHOI ; Eul-Soon IM ; Kyung-Heon WON ; Sung Yun LEE ; Sang-Wook KIM ; Ki Hong CHOI ; Joo Myung LEE ; Taek Kyu PARK ; Jeong Hoon YANG ; Young Bin SONG ; Seung-Hyuk CHOI ; Hyeon-Cheol GWON
Korean Circulation Journal 2025;55(3):185-195
Background and Objectives:
Outcomes of deferring percutaneous coronary intervention (PCI) without invasive physiologic assessment for intermediate coronary lesions is uncertain.We sought to compare long-term outcomes between medical treatment and PCI of intermediate lesions without invasive physiologic assessment.
Methods:
A total of 899 patients with intermediate coronary lesions between 50% and 70% diameter-stenosis were randomized to the conservative group (n=449) or the aggressive group (n=450). For intermediate lesions, PCI was performed in the aggressive group, but was deferred in the conservative group. The primary endpoint was major adverse cardiac events (MACE, a composite of all-cause death, myocardial infarction [MI], or ischemia-driven any revascularization) at 3 years.
Results:
The number of treated lesions per patient was 0.8±0.9 in the conservative group and 1.7±0.9 in the aggressive group (p=0.001). At 3 years, the conservative group had a significantly higher incidence of MACE than the aggressive group (13.8% vs. 9.3%; hazard ratio [HR], 1.49; 95% confidence interval [CI], 1.00–2.21; p=0.049), mainly driven by revascularization of target intermediate lesion (6.5% vs. 1.1%; HR, 5.69; 95% CI, 2.20–14.73;p<0.001). Between 1 and 3 years after the index procedure, compared to the aggressive group, the conservative group had significantly higher incidence of cardiac death or MI (3.2% vs.0.7%; HR, 4.34; 95% CI, 1.24–15.22; p=0.022) and ischemia-driven any revascularization.
Conclusions
For intermediate lesions, medical therapy alone, guided only by angiography, was associated with a higher risk of MACE at 3 years compared with performing PCI, mainly due to increased revascularization.
4.Outcomes of Deferring Percutaneous Coronary Intervention Without Physiologic Assessment for Intermediate Coronary Lesions
Jihoon KIM ; Seong-Hoon LIM ; Joo-Yong HAHN ; Jin-Ok JEONG ; Yong Hwan PARK ; Woo Jung CHUN ; Ju Hyeon OH ; Dae Kyoung CHO ; Yu Jeong CHOI ; Eul-Soon IM ; Kyung-Heon WON ; Sung Yun LEE ; Sang-Wook KIM ; Ki Hong CHOI ; Joo Myung LEE ; Taek Kyu PARK ; Jeong Hoon YANG ; Young Bin SONG ; Seung-Hyuk CHOI ; Hyeon-Cheol GWON
Korean Circulation Journal 2025;55(3):185-195
Background and Objectives:
Outcomes of deferring percutaneous coronary intervention (PCI) without invasive physiologic assessment for intermediate coronary lesions is uncertain.We sought to compare long-term outcomes between medical treatment and PCI of intermediate lesions without invasive physiologic assessment.
Methods:
A total of 899 patients with intermediate coronary lesions between 50% and 70% diameter-stenosis were randomized to the conservative group (n=449) or the aggressive group (n=450). For intermediate lesions, PCI was performed in the aggressive group, but was deferred in the conservative group. The primary endpoint was major adverse cardiac events (MACE, a composite of all-cause death, myocardial infarction [MI], or ischemia-driven any revascularization) at 3 years.
Results:
The number of treated lesions per patient was 0.8±0.9 in the conservative group and 1.7±0.9 in the aggressive group (p=0.001). At 3 years, the conservative group had a significantly higher incidence of MACE than the aggressive group (13.8% vs. 9.3%; hazard ratio [HR], 1.49; 95% confidence interval [CI], 1.00–2.21; p=0.049), mainly driven by revascularization of target intermediate lesion (6.5% vs. 1.1%; HR, 5.69; 95% CI, 2.20–14.73;p<0.001). Between 1 and 3 years after the index procedure, compared to the aggressive group, the conservative group had significantly higher incidence of cardiac death or MI (3.2% vs.0.7%; HR, 4.34; 95% CI, 1.24–15.22; p=0.022) and ischemia-driven any revascularization.
Conclusions
For intermediate lesions, medical therapy alone, guided only by angiography, was associated with a higher risk of MACE at 3 years compared with performing PCI, mainly due to increased revascularization.
5.Liberation from mechanical ventilation in critically ill patients: Korean Society of Critical Care Medicine Clinical Practice Guidelines
Tae Sun HA ; Dong Kyu OH ; Hak-Jae LEE ; Youjin CHANG ; In Seok JEONG ; Yun Su SIM ; Suk-Kyung HONG ; Sunghoon PARK ; Gee Young SUH ; So Young PARK
Acute and Critical Care 2024;39(1):1-23
Successful liberation from mechanical ventilation is one of the most crucial processes in critical care because it is the first step by which a respiratory failure patient begins to transition out of the intensive care unit and return to their own life. Therefore, when devising appropriate strategies for removing mechanical ventilation, it is essential to consider not only the individual experiences of healthcare professionals, but also scientific and systematic approaches. Recently, numerous studies have investigated methods and tools for identifying when mechanically ventilated patients are ready to breathe on their own. The Korean Society of Critical Care Medicine therefore provides these recommendations to clinicians about liberation from the ventilator. Methods: Meta-analyses and comprehensive syntheses were used to thoroughly review, compile, and summarize the complete body of relevant evidence. All studies were meticulously assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method, and the outcomes were presented succinctly as evidence profiles. Those evidence syntheses were discussed by a multidisciplinary committee of experts in mechanical ventilation, who then developed and approved recommendations. Results: Recommendations for nine PICO (population, intervention, comparator, and outcome) questions about ventilator liberation are presented in this document. This guideline includes seven conditional recommendations, one expert consensus recommendation, and one conditional deferred recommendation. Conclusions: We developed these clinical guidelines for mechanical ventilation liberation to provide meaningful recommendations. These guidelines reflect the best treatment for patients seeking liberation from mechanical ventilation.
6.Liberation from mechanical ventilation in critically ill patients: Korean Society of Critical Care Medicine Clinical Practice Guidelines
Tae Sun HA ; Dong Kyu OH ; Hak-Jae LEE ; Youjin CHANG ; In Seok JEONG ; Yun Su SIM ; Suk-Kyung HONG ; Sunghoon PARK ; Gee Young SUH ; So Young PARK
Acute and Critical Care 2024;39(1):1-23
Successful liberation from mechanical ventilation is one of the most crucial processes in critical care because it is the first step by which a respiratory failure patient begins to transition out of the intensive care unit and return to their own life. Therefore, when devising appropriate strategies for removing mechanical ventilation, it is essential to consider not only the individual experiences of healthcare professionals, but also scientific and systematic approaches. Recently, numerous studies have investigated methods and tools for identifying when mechanically ventilated patients are ready to breathe on their own. The Korean Society of Critical Care Medicine therefore provides these recommendations to clinicians about liberation from the ventilator. Methods: Meta-analyses and comprehensive syntheses were used to thoroughly review, compile, and summarize the complete body of relevant evidence. All studies were meticulously assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method, and the outcomes were presented succinctly as evidence profiles. Those evidence syntheses were discussed by a multidisciplinary committee of experts in mechanical ventilation, who then developed and approved recommendations. Results: Recommendations for nine PICO (population, intervention, comparator, and outcome) questions about ventilator liberation are presented in this document. This guideline includes seven conditional recommendations, one expert consensus recommendation, and one conditional deferred recommendation. Conclusions: We developed these clinical guidelines for mechanical ventilation liberation to provide meaningful recommendations. These guidelines reflect the best treatment for patients seeking liberation from mechanical ventilation.
7.Liberation from mechanical ventilation in critically ill patients: Korean Society of Critical Care Medicine Clinical Practice Guidelines
Tae Sun HA ; Dong Kyu OH ; Hak-Jae LEE ; Youjin CHANG ; In Seok JEONG ; Yun Su SIM ; Suk-Kyung HONG ; Sunghoon PARK ; Gee Young SUH ; So Young PARK
Acute and Critical Care 2024;39(1):1-23
Successful liberation from mechanical ventilation is one of the most crucial processes in critical care because it is the first step by which a respiratory failure patient begins to transition out of the intensive care unit and return to their own life. Therefore, when devising appropriate strategies for removing mechanical ventilation, it is essential to consider not only the individual experiences of healthcare professionals, but also scientific and systematic approaches. Recently, numerous studies have investigated methods and tools for identifying when mechanically ventilated patients are ready to breathe on their own. The Korean Society of Critical Care Medicine therefore provides these recommendations to clinicians about liberation from the ventilator. Methods: Meta-analyses and comprehensive syntheses were used to thoroughly review, compile, and summarize the complete body of relevant evidence. All studies were meticulously assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method, and the outcomes were presented succinctly as evidence profiles. Those evidence syntheses were discussed by a multidisciplinary committee of experts in mechanical ventilation, who then developed and approved recommendations. Results: Recommendations for nine PICO (population, intervention, comparator, and outcome) questions about ventilator liberation are presented in this document. This guideline includes seven conditional recommendations, one expert consensus recommendation, and one conditional deferred recommendation. Conclusions: We developed these clinical guidelines for mechanical ventilation liberation to provide meaningful recommendations. These guidelines reflect the best treatment for patients seeking liberation from mechanical ventilation.
8.Liberation from mechanical ventilation in critically ill patients: Korean Society of Critical Care Medicine Clinical Practice Guidelines
Tae Sun HA ; Dong Kyu OH ; Hak-Jae LEE ; Youjin CHANG ; In Seok JEONG ; Yun Su SIM ; Suk-Kyung HONG ; Sunghoon PARK ; Gee Young SUH ; So Young PARK
Acute and Critical Care 2024;39(1):1-23
Successful liberation from mechanical ventilation is one of the most crucial processes in critical care because it is the first step by which a respiratory failure patient begins to transition out of the intensive care unit and return to their own life. Therefore, when devising appropriate strategies for removing mechanical ventilation, it is essential to consider not only the individual experiences of healthcare professionals, but also scientific and systematic approaches. Recently, numerous studies have investigated methods and tools for identifying when mechanically ventilated patients are ready to breathe on their own. The Korean Society of Critical Care Medicine therefore provides these recommendations to clinicians about liberation from the ventilator. Methods: Meta-analyses and comprehensive syntheses were used to thoroughly review, compile, and summarize the complete body of relevant evidence. All studies were meticulously assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method, and the outcomes were presented succinctly as evidence profiles. Those evidence syntheses were discussed by a multidisciplinary committee of experts in mechanical ventilation, who then developed and approved recommendations. Results: Recommendations for nine PICO (population, intervention, comparator, and outcome) questions about ventilator liberation are presented in this document. This guideline includes seven conditional recommendations, one expert consensus recommendation, and one conditional deferred recommendation. Conclusions: We developed these clinical guidelines for mechanical ventilation liberation to provide meaningful recommendations. These guidelines reflect the best treatment for patients seeking liberation from mechanical ventilation.
9.Guideline for Minimizing Radiation Exposure of Interventionalists during Fluoroscopy-guided Interventional Procedures
Il Sang SHIN ; Yun Nah LEE ; Jun Kyu LEE ; Joo Seong KIM ; Sung Bum KIM ; Jiyoung KEUM ; Chang Hoon OH ; Kang Won LEE ; Joowon CHUNG ; Lyo Min KWON ; Nam Hee KIM ; Sang Soo LEE ; Byoung Kwan SON ; Miyoung CHOI
The Korean Journal of Gastroenterology 2024;84(6):251-264
As fluoroscopy-guided interventional procedures gain popularity, the associated health threats from radiation exposure to interventionalists during these procedures are increasing. Therefore, an understanding of the potential risks of radiation and careful consideration on minimizing exposure to radiation during the procedures are of paramount importance. The Korean Pancreatobiliary Association has developed a clinical practice guideline to minimize radiation exposure during fluoroscopy-guided interventional procedures. This guideline provides recommendations to deal with the risk of radiation exposure to interventionalists who perform fluoroscopy-guided procedures, and emphasizes the importance of proper and practical approaches to avoid unnecessary radiation exposure.
10.Guideline for Minimizing Radiation Exposure of Interventionalists during Fluoroscopy-guided Interventional Procedures
Il Sang SHIN ; Yun Nah LEE ; Jun Kyu LEE ; Joo Seong KIM ; Sung Bum KIM ; Jiyoung KEUM ; Chang Hoon OH ; Kang Won LEE ; Joowon CHUNG ; Lyo Min KWON ; Nam Hee KIM ; Sang Soo LEE ; Byoung Kwan SON ; Miyoung CHOI
The Korean Journal of Gastroenterology 2024;84(6):251-264
As fluoroscopy-guided interventional procedures gain popularity, the associated health threats from radiation exposure to interventionalists during these procedures are increasing. Therefore, an understanding of the potential risks of radiation and careful consideration on minimizing exposure to radiation during the procedures are of paramount importance. The Korean Pancreatobiliary Association has developed a clinical practice guideline to minimize radiation exposure during fluoroscopy-guided interventional procedures. This guideline provides recommendations to deal with the risk of radiation exposure to interventionalists who perform fluoroscopy-guided procedures, and emphasizes the importance of proper and practical approaches to avoid unnecessary radiation exposure.

Result Analysis
Print
Save
E-mail