1.Intramanchette transport during primate spermiogenesis: expression of dynein, myosin Va, motor recruiter myosin Va, VIIa-Rab27a/b interacting protein, and Rab27b in the manchette during human and monkey spermiogenesis.
Shinichi HAYASAKA ; Yukihiro TERADA ; Kichiya SUZUKI ; Haruo MURAKAWA ; Ikuo TACHIBANA ; Tadashi SANKAI ; Takashi MURAKAMI ; Nobuo YAEGASHI ; Kunihiro OKAMURA
Asian Journal of Andrology 2008;10(4):561-568
AIMTo show whether molecular motor dynein on a microtubule track, molecular motor myosin Va, motor recruiter myosin Va, VIIa-Rab27a/b interacting protein (MyRIP), and vesicle receptor Rab27b on an F-actin track were present during human and monkey spermiogenesis involving intramanchette transport (IMT).
METHODSSpermiogenic cells were obtained from three men with obstructive azoospermia and normal adult cynomolgus monkey (Macaca fascicularis). Immunocytochemical detection and reverse transcription-polymerase chain reaction (RT-PCR) analysis of the proteins were carried out. Samples were analyzed by light microscope.
RESULTSUsing RT-PCR, we found that dynein, myosin Va, MyRIP and Rab27b were expressed in monkey testis. These proteins were localized to the manchette, as shown by immunofluorescence, particularly during human and monkey spermiogenesis.
CONCLUSIONWe speculate that during primate spermiogenesis, those proteins that compose microtubule-based and actin-based vesicle transport systems are actually present in the manchette and might possibly be involved in intramanchette transport.
Actins ; metabolism ; Adult ; Animals ; Biological Transport ; physiology ; Dyneins ; metabolism ; Humans ; Macaca fascicularis ; Male ; Microtubules ; metabolism ; Myosin Heavy Chains ; metabolism ; Myosin Type V ; metabolism ; Myosins ; metabolism ; Spermatids ; cytology ; metabolism ; Spermatogenesis ; physiology ; Testis ; cytology ; metabolism ; Transport Vesicles ; physiology ; Vesicular Transport Proteins ; metabolism ; rab GTP-Binding Proteins ; metabolism
2.MLH1 promoter hypermethylation predicts poorer prognosis in mismatch repair deficiency endometrial carcinomas
Enami KANEKO ; Naoki SATO ; Tae SUGAWARA ; Aya NOTO ; Kazue TAKAHASHI ; Kenichi MAKINO ; Yukihiro TERADA
Journal of Gynecologic Oncology 2021;32(6):e79-
Objective:
The antitumor effects of anti-PD-1 antibody against mismatch repair deficiency (MMR-D)-associated cancers have been reported. MMR-D is found in approximately 20%–30% of endometrial carcinomas (ECs) and frequently occurs due to MLH1 promoter hypermethylation (MLH1-PHM). ECs with MLH1-PHM are classified according to the molecular screening of Lynch syndrome (LS), but few detailed reports are available. The purpose of this study was to clarify the clinical features of EC with MLH1-PHM.
Methods:
Immunohistochemistry of MMR proteins (MLH1, MSH2, MSH6, and PMS2) was performed on specimens from 527 ECs treated at our university hospital from 2003 to 2018. MLH1 methylation analysis was added to cases with MLH1/PMS2 loss. ECs were classified as follows: cases that retained MMR proteins as “MMR-proficient;” cases with MLH1/PMS2 loss and MLH1-PHM as “met-EC;” and cases with other MMR protein loss and MLH1/PMS2 loss without MLH1-PHM as “suspected-LS.” The clinical features, including long-term prognosis, of each group, were analyzed.
Results:
Accordingly, 419 (79.5%), 65 (12.3%), and 43 (8.2%) cases were categorized as “MMR-proficient,” “suspected-LS,” and “met-EC,” respectively. Significantly, “met-EC” had a lower proportion of grade 1 tumors (37.5%) and a higher proportion of stage III/IV tumors (37.2%) than the other groups. The overall and progression-free survival of “met-EC” were significantly worse than those of “suspected-LS” in all cases.
Conclusion
In ECs with MMR-D, “met-ECs” were a subgroup with a poorer prognosis than “suspected-LS.” “Met-ECs” would be the main target for anti-PD-1 antibody treatment, and its clinical susceptibility should be verified individually.