1.Transcriptomic signature in advanced hepatocellular carcinoma tissue to predict combination immunotherapy response: Editorial on “Genomic biomarkers to predict response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma: Insights from the IMbrave150 trial”
Hiroaki KANZAKI ; Yujin HOSHIDA
Clinical and Molecular Hepatology 2025;31(1):308-310
3.Transcriptomic signature in advanced hepatocellular carcinoma tissue to predict combination immunotherapy response: Editorial on “Genomic biomarkers to predict response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma: Insights from the IMbrave150 trial”
Hiroaki KANZAKI ; Yujin HOSHIDA
Clinical and Molecular Hepatology 2025;31(1):308-310
5.Transcriptomic signature in advanced hepatocellular carcinoma tissue to predict combination immunotherapy response: Editorial on “Genomic biomarkers to predict response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma: Insights from the IMbrave150 trial”
Hiroaki KANZAKI ; Yujin HOSHIDA
Clinical and Molecular Hepatology 2025;31(1):308-310
7.Hepatitis C virus-induced hepatocellular carcinoma.
Nicolas GOOSSENS ; Yujin HOSHIDA
Clinical and Molecular Hepatology 2015;21(2):105-114
Hepatitis C virus (HCV) is a leading etiology of hepatocellular carcinoma (HCC). The interaction of HCV with its human host is complex and multilayered; stemming in part from the fact that HCV is a RNA virus with no ability to integrate in the host's genome. Direct and indirect mechanisms of HCV-induced HCC include activation of multiple host pathways such as liver fibrogenic pathways, cellular and survival pathways, interaction with the immune and metabolic systems. Host factors also play a major role in HCV-induced HCC as evidenced by genomic studies identifying polymorphisms in immune, metabolic, and growth signaling systems associated with increased risk of HCC. Despite highly effective direct-acting antiviral agents, the morbidity and incidence of liver-related complications of HCV, including HCC, is likely to persist in the near future. Clinical markers to selectively identify HCV subjects at higher risk of developing HCC have been reported however they require further validation, especially in subjects who have experienced sustained virological response. Molecular biomarkers allowing further refinement of HCC risk are starting to be implemented in clinical platforms, allowing objective stratification of risk and leading to individualized therapy and surveillance for HCV individuals. Another role for molecular biomarker-based stratification could be enrichment of HCC chemoprevention clinical trials leading to smaller sample size, shorter trial duration, and reduced costs.
Biomarkers, Tumor/genetics/metabolism
;
Carcinoma, Hepatocellular/*etiology
;
Hepacivirus/genetics/*pathogenicity
;
Hepatitis C/complications/pathology/virology
;
Humans
;
Liver Neoplasms/*etiology
;
Risk
8.Molecular and immune landscape of hepatocellular carcinoma for therapeutic development
Hiroyuki SUZUKI ; Sumit MISHRA ; Subhojit PAUL ; Yujin HOSHIDA
Journal of Liver Cancer 2025;25(1):9-18
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, with an estimated 750,000 deaths in 2022. Recent emergence of molecular targeted agents and immune checkpoint inhibitors and their combination therapies have been transforming HCC care, but their prognostic impact in advanced-stage disease remains unsatisfactory. In addition, their application to early-stage disease is still an unmet need. Omics profiling studies have elucidated recurrent and heterogeneously present molecular aberrations involved in pro-cancer tumor (immune) microenvironment that may guide therapeutic strategies. Recurrent aberrations such somatic mutations in TERT promoter and TP53 have been regarded undruggable, but recent studies have suggested that these may serve as new classes of therapeutic targets. HCC markers such as alpha-fetoprotein, glypican-3, and epithelial cell adhesion molecule have also been explored as therapeutic targets. These molecular features may be utilized as biomarkers to guide the application of new approaches as companion biomarkers to maximize therapeutic benefits in patients who are likely to benefit from the therapies, while minimizing unnecessary harm in patients who will not respond. The explosive number of new agents in the pipelines have posed challenges in their clinical testing. Novel clinical trial designs guided by predictive biomarkers have been proposed to enable their efficient and cost-effective evaluation. These new developments collectively facilitate clinical translation of personalized molecular-targeted therapies in HCC and substantially improve prognosis of HCC patients.
9.Molecular and immune landscape of hepatocellular carcinoma for therapeutic development
Hiroyuki SUZUKI ; Sumit MISHRA ; Subhojit PAUL ; Yujin HOSHIDA
Journal of Liver Cancer 2025;25(1):9-18
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, with an estimated 750,000 deaths in 2022. Recent emergence of molecular targeted agents and immune checkpoint inhibitors and their combination therapies have been transforming HCC care, but their prognostic impact in advanced-stage disease remains unsatisfactory. In addition, their application to early-stage disease is still an unmet need. Omics profiling studies have elucidated recurrent and heterogeneously present molecular aberrations involved in pro-cancer tumor (immune) microenvironment that may guide therapeutic strategies. Recurrent aberrations such somatic mutations in TERT promoter and TP53 have been regarded undruggable, but recent studies have suggested that these may serve as new classes of therapeutic targets. HCC markers such as alpha-fetoprotein, glypican-3, and epithelial cell adhesion molecule have also been explored as therapeutic targets. These molecular features may be utilized as biomarkers to guide the application of new approaches as companion biomarkers to maximize therapeutic benefits in patients who are likely to benefit from the therapies, while minimizing unnecessary harm in patients who will not respond. The explosive number of new agents in the pipelines have posed challenges in their clinical testing. Novel clinical trial designs guided by predictive biomarkers have been proposed to enable their efficient and cost-effective evaluation. These new developments collectively facilitate clinical translation of personalized molecular-targeted therapies in HCC and substantially improve prognosis of HCC patients.
10.Molecular and immune landscape of hepatocellular carcinoma for therapeutic development
Hiroyuki SUZUKI ; Sumit MISHRA ; Subhojit PAUL ; Yujin HOSHIDA
Journal of Liver Cancer 2025;25(1):9-18
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, with an estimated 750,000 deaths in 2022. Recent emergence of molecular targeted agents and immune checkpoint inhibitors and their combination therapies have been transforming HCC care, but their prognostic impact in advanced-stage disease remains unsatisfactory. In addition, their application to early-stage disease is still an unmet need. Omics profiling studies have elucidated recurrent and heterogeneously present molecular aberrations involved in pro-cancer tumor (immune) microenvironment that may guide therapeutic strategies. Recurrent aberrations such somatic mutations in TERT promoter and TP53 have been regarded undruggable, but recent studies have suggested that these may serve as new classes of therapeutic targets. HCC markers such as alpha-fetoprotein, glypican-3, and epithelial cell adhesion molecule have also been explored as therapeutic targets. These molecular features may be utilized as biomarkers to guide the application of new approaches as companion biomarkers to maximize therapeutic benefits in patients who are likely to benefit from the therapies, while minimizing unnecessary harm in patients who will not respond. The explosive number of new agents in the pipelines have posed challenges in their clinical testing. Novel clinical trial designs guided by predictive biomarkers have been proposed to enable their efficient and cost-effective evaluation. These new developments collectively facilitate clinical translation of personalized molecular-targeted therapies in HCC and substantially improve prognosis of HCC patients.