1.Computational pathology in precision oncology: Evolution from task-specific models to foundation models.
Yuhao WANG ; Yunjie GU ; Xueyuan ZHANG ; Baizhi WANG ; Rundong WANG ; Xiaolong LI ; Yudong LIU ; Fengmei QU ; Fei REN ; Rui YAN ; S Kevin ZHOU
Chinese Medical Journal 2025;138(22):2868-2878
With the rapid development of artificial intelligence, computational pathology has been seamlessly integrated into the entire clinical workflow, which encompasses diagnosis, treatment, prognosis, and biomarker discovery. This integration has significantly enhanced clinical accuracy and efficiency while reducing the workload for clinicians. Traditionally, research in this field has depended on the collection and labeling of large datasets for specific tasks, followed by the development of task-specific computational pathology models. However, this approach is labor intensive and does not scale efficiently for open-set identification or rare diseases. Given the diversity of clinical tasks, training individual models from scratch to address the whole spectrum of clinical tasks in the pathology workflow is impractical, which highlights the urgent need to transition from task-specific models to foundation models (FMs). In recent years, pathological FMs have proliferated. These FMs can be classified into three categories, namely, pathology image FMs, pathology image-text FMs, and pathology image-gene FMs, each of which results in distinct functionalities and application scenarios. This review provides an overview of the latest research advancements in pathological FMs, with a particular emphasis on their applications in oncology. The key challenges and opportunities presented by pathological FMs in precision oncology are also explored.
Humans
;
Precision Medicine/methods*
;
Medical Oncology/methods*
;
Artificial Intelligence
;
Neoplasms/pathology*
;
Computational Biology/methods*
2.13-Docosenamide Enhances Oligodendrocyte Precursor Cell Differentiation via USP33-Mediated Deubiquitination of CNR1 in Chronic Cerebral Hypoperfusion.
Yuhao XU ; Yi TAN ; Zhi ZHANG ; Duo CHEN ; Chao ZHOU ; Liang SUN ; Shengnan XIA ; Xinyu BAO ; Haiyan YANG ; Yun XU
Neuroscience Bulletin 2025;41(11):1939-1956
Chronic cerebral hypoperfusion leads to white matter injury (WMI), which plays a significant role in contributing to vascular cognitive impairment. While 13-docosenamide is a type of fatty acid amide, it remains unclear whether it has therapeutic effects on chronic cerebral hypoperfusion. In this study, we conducted bilateral common carotid artery stenosis (BCAS) surgery to simulate chronic cerebral hypoperfusion-induced WMI and cognitive impairment. Our findings showed that 13-docosenamide alleviates WMI and cognitive impairment in BCAS mice. Mechanistically, 13-docosenamide specifically binds to cannabinoid receptor 1 (CNR1) in oligodendrocyte precursor cells (OPCs). This interaction results in an upregulation of ubiquitin-specific peptidase 33 (USP33)-mediated CNR1 deubiquitination, subsequently increasing CNR1 protein expression, activating the phosphorylation of the AKT/mTOR pathway, and promoting the differentiation of OPCs. In conclusion, our study suggests that 13-docosenamide can ameliorate chronic cerebral hypoperfusion-induced WMI and cognitive impairment by enhancing OPC differentiation and could serve as a potential therapeutic drug.
Animals
;
Oligodendrocyte Precursor Cells/metabolism*
;
Mice
;
Cell Differentiation/drug effects*
;
Male
;
Receptor, Cannabinoid, CB1/metabolism*
;
Mice, Inbred C57BL
;
Ubiquitin Thiolesterase/metabolism*
;
Ubiquitination/drug effects*
;
Carotid Stenosis/complications*
;
Cognitive Dysfunction/drug therapy*
3.Youguiwan Reduces Airway Inflammation in COPD Rats with Syndrome of Kidney-Yang Deficiency by Inhibiting Leptin/JAK2/STAT3 Signaling Pathway
Lan ZHENG ; Zeyuan LUO ; Min XIAO ; Xiaocui JIANG ; Yuhao MENG ; Siyi CHEN ; Jing ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(14):17-26
ObjectiveTo observe the effect of Youguiwan on the leptin/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in the lung tissue of the rat model of chronic obstructive pulmonary disease (COPD) due to kidney-Yang deficiency. MethodForty rats were modeled for COPD with the syndrome of kidney-Yang deficiency by intratracheal instillation of lipopolysaccharide on day 1 and day 14 and continuous fumigation for 6 weeks, during which hydrocortisone was injected intramuscularly at an interval of 3 days. The modeled rats were randomized into model, high- (11.7 g·kg-1), medium- (5.85 g·kg-1), and low-dose (2.93 g·kg-1) Youguiwan, and aminophylline (0.054 g·kg-1) group. In addition, 8 SD rats were set as the blank group. After the completion of modeling, the rats in each group were administrated with the corresponding drug by gavage for 28 consecutive days. After the last administration, samples were collected. A lung function analyzer was used to evaluate the lung function of rats. Enzyme-linked immunosorbent assay was employed to measure the levels of interleukin-17A (IL-17A), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the bronchoalveolar lavage fluid (BALF). Hematoxylin-eosin staining was employed to observe the pathological changes in the lung tissue, and Masson staining was employed to observe the deposition of blue collagen fibers around bronchi in the lung tissue and calculate the inflammation score. The immunofluorescence assay was employed to measure the protein content of collagen type Ⅰ (ColⅠ) and α-smooth muscle actin (α-SMA) in the bronchi. The protein and mRNA levels of leptin, IL-17A, JAK2, and STAT3 in the lung tissue were determined by Western blot and real-time fluorescence quantitative polymerase chain reaction, respectively. ResultCompared with the blank group, the model group showed decreased lung function (P<0.01), elevated levels of IL-6, IL-17A, and TNF-α in the BALF (P<0.01), and increased lung inflammation score, deposition of subcutaneous collagen fibers in the airway, and ColⅠ and α-SMA proteins (P<0.01). Furthermore, the modeling up-regulated the proteins and mRNA levels of leptin, IL-17A, JAK2, and STAT3 in the lung tissue (P<0.01) and enhanced the phosphorylation of JAK2 and STAT3 (P<0.01). Compared with the model group, high- and medium-dose Youguiwan improved the lung function, decreased the inflammation score, reduced collagen fiber deposition and ColⅠ and α-SMA proteins, lowered the levels of IL-6, IL-17A, and TNF-α in the BALF, down-regulated the mRNA and protein levels of leptin, JAK2, STAT3, and IL-17A, and weakened the phosphorylation of JAK2 and STAT3 (P<0.05, P<0.01). The aminophylline group had higher IL-17A and TNF-α levels than the high-dose Youguiwan group, lower IL-17A level than the medium and low-dose Youguiwan groups, and lower TNF-α level than the low-dose Youguiwan group. Compared with the aminophylline group, the high- and medium-dose Youguiwan groups showed reduced deposition of collagen fibers and protein levels of ColⅠ and α-SMA around the bronchi in the lung tissue (P<0.05, P<0.01), decreased inflammation score, and down-regulated protein and mRNA levels of leptin, JAK2, STAT3, and IL-17A in the lung tissue. ConclusionYouguiwan can prevent airway remodeling by inhibiting IL-17A to reduce inflammation and collagen deposition in COPD rats, which may be related to the inhibition of the leptin/JAK2/STAT3 signaling pathway.
4.Urolithin A mediates p38/MAPK pathway to inhibit osteoclast activity
Haoran HUANG ; Yinuo FAN ; Wenxiang WEI-YANG ; Mengyu JIANG ; Hanjun FANG ; Haibin WANG ; Zhenqiu CHEN ; Yuhao LIU ; Chi ZHOU
Chinese Journal of Tissue Engineering Research 2024;28(8):1149-1154
BACKGROUND:Overactive osteoclasts disrupt bone homeostasis and play a bad role in the pathological mechanisms of related skeletal diseases,such as osteoporosis,fragility fractures,and osteoarthritis.Studies have confirmed that ellagic acid and ellagtannin have the potential to inhibit osteoclast differentiation.As their natural metabolites,urolithin A has antioxidant,anti-inflammatory,anti-proliferative and anti-cancer effects,but its effect on osteoclast differentiation and its underlying molecular mechanisms remain unclear. OBJECTIVE:To explore the effect of urolithin A on osteoclast differentiation induced by receptor activator for nuclear factor-κB ligand and its mechanism. METHODS:Mouse mononuclear macrophage leukemia cells(RAW264.7)that grew stably were cultured in vitro.Toxicity of urolithin A(0,0.1,0.5,1.5,2.5 μmol/L)to RAW264.7 cells were detected by cytotoxic MTS assay to screen out the safe concentration.Different concentrations of urolithin A were used again to intervene with receptor activator for nuclear factor-κB ligand-induced differentiation of RAW264.7 cells in vitro.Then,tartrate-resistant acid phosphatase staining and F-actin ring and nucleus staining were performed to observe its effect on the formation and function of osteoclasts.Finally,the expressions of urolithin A on upstream and downstream genes and proteins in the MAPK signaling pathway were observed by western blot and RT-qPCR assays. RESULTS AND CONCLUSION:Urolithin A inhibited osteoclast differentiation and F-actin ring formation in a concentration-dependent manner and 2.5 μmol/L had the strongest inhibitory effect.Urolithin A inhibited the mRNA expression of Nfatc1,Ctsk,Mmp9 and Atp6v0d2 and the protein synthesis of Nfatc1 and Ctsk,related to osteoclast formation and bone resorption.Urolithin A inhibited the activity of osteoclasts by downregulating the phosphorylation of p38 protein to inhibit the mitogen-activated protein kinase signaling pathway.
5.The pathological progression of steroid-induced osteonecrosis of the femoral head caused by oxidative stress-induced osteoblast ferroptosis
Jiahao ZHANG ; Yuhao LIU ; Chi ZHOU ; Liang MO ; Hanjun FANG ; Zhenqiu CHEN
Chinese Journal of Tissue Engineering Research 2024;28(20):3202-3208
BACKGROUND:Studies have shown that imbalance of bone metabolism during glucocorticoid-induced osteonecrosis of the femoral head necrosis is closely related to oxidative stress. OBJECTIVE:To investigate the pathological mechanism by which oxidative stress-induced ferroptosis promote apoptosis in osteoblasts involved in steroid-induced osteonecrosis of the femoral head. METHODS:General data and serum specimens were collected from 47 patients with steroid-induced osteonecrosis of the femoral head.In addition,six femoral head specimens were collected from these patients.According to the Association Research Circulation Osseous(ARCO)staging system,serum specimens were grouped into ARCO Ⅱ,Ⅲ,and IV,while femoral head specimens were classified into ARCO Ⅲ and IV.Serum levels of malondialdehyde and superoxide dismutase 1 were measured.The protein expression of superoxide dismutase 1,glutathione peroxidase 4,Bcl-2 in the femoral head was detected and verified by Data independent acquisition(DIA)for quantitative sequencing,western blot and alkaline phosphate detection. RESULTS AND CONCLUSION:The ARCO stage of patients with steroid-induced osteonecrosis of the femoral head was independent of age,sex and necrotic side.The serum levels of malondialdehyde and superoxide dismutase 1 were higher in patients with ARCO stage Ⅲ compared with those with ARCO stage Ⅱ and IV.The results of DIA protein quantification showed that the function of differential proteins was mainly related to redox.The levels of superoxide dismutase 1,glutathione peroxidase 4,and Bcl-2 in the necrotic region were lower than in the normal region,as well as lower in ARCO stage IV than in ARCO stage Ⅲ.Western blot verified the results of DIA protein quantification.The alkaline phosphatase activity was lower in the necrotic region than in the normal region,as well as lower in ARCO stage IV than in ARCO stage Ⅲ.In the necrotic and sclerotic regions,the function of differential proteins was also related to redox,and superoxide dismutase 1,glutathione peroxidase 4,Bcl-2 protein expression and alkaline phosphatase activity were lower in the necrotic area than in the sclerotic region,as well as lower in ARCO stage IV than in ARCO stage Ⅲ.To conclude,glucocorticoids can influence the progression of steroid-induced osteonecrosis of the femoral head by upregulating oxidative stress levels,inducing osteoblast ferroptosis,and inhibiting osteogenic function.
6.How to Allocate the Total Price Adjustments for Medical Services:Exploring the Experience of the Pilot Cities for Medical Service Price Reform
Cancan JU ; Wei XU ; Ping LIU ; Yuhao WANG ; Jian ZHOU
Chinese Health Economics 2024;43(5):63-67
Based on introducing the total price adjustments in pilot cities and analyzing the existing problems,it further analyzes the objectives of the total price adjustment allocation of medical service items,the characteristics of various types of medical service items and the possible impact of price adjustment,concludes that the priority of the total price adjustment allocation should be as follows:new items,special tasks,complex items,general items,and medical services for special needs.It also combines the practical experience of the pilot cities to establish the total price adjustment allocation mechanism,and provides opinions on the total price adjustment allocation before the dynamic adjustment of medical service prices in the future.
7.How to Allocate the Total Price Adjustments for Medical Services:Exploring the Experience of the Pilot Cities for Medical Service Price Reform
Cancan JU ; Wei XU ; Ping LIU ; Yuhao WANG ; Jian ZHOU
Chinese Health Economics 2024;43(5):63-67
Based on introducing the total price adjustments in pilot cities and analyzing the existing problems,it further analyzes the objectives of the total price adjustment allocation of medical service items,the characteristics of various types of medical service items and the possible impact of price adjustment,concludes that the priority of the total price adjustment allocation should be as follows:new items,special tasks,complex items,general items,and medical services for special needs.It also combines the practical experience of the pilot cities to establish the total price adjustment allocation mechanism,and provides opinions on the total price adjustment allocation before the dynamic adjustment of medical service prices in the future.
8.How to Allocate the Total Price Adjustments for Medical Services:Exploring the Experience of the Pilot Cities for Medical Service Price Reform
Cancan JU ; Wei XU ; Ping LIU ; Yuhao WANG ; Jian ZHOU
Chinese Health Economics 2024;43(5):63-67
Based on introducing the total price adjustments in pilot cities and analyzing the existing problems,it further analyzes the objectives of the total price adjustment allocation of medical service items,the characteristics of various types of medical service items and the possible impact of price adjustment,concludes that the priority of the total price adjustment allocation should be as follows:new items,special tasks,complex items,general items,and medical services for special needs.It also combines the practical experience of the pilot cities to establish the total price adjustment allocation mechanism,and provides opinions on the total price adjustment allocation before the dynamic adjustment of medical service prices in the future.
9.How to Allocate the Total Price Adjustments for Medical Services:Exploring the Experience of the Pilot Cities for Medical Service Price Reform
Cancan JU ; Wei XU ; Ping LIU ; Yuhao WANG ; Jian ZHOU
Chinese Health Economics 2024;43(5):63-67
Based on introducing the total price adjustments in pilot cities and analyzing the existing problems,it further analyzes the objectives of the total price adjustment allocation of medical service items,the characteristics of various types of medical service items and the possible impact of price adjustment,concludes that the priority of the total price adjustment allocation should be as follows:new items,special tasks,complex items,general items,and medical services for special needs.It also combines the practical experience of the pilot cities to establish the total price adjustment allocation mechanism,and provides opinions on the total price adjustment allocation before the dynamic adjustment of medical service prices in the future.
10.A case of visceral myopathy with ATCG2 gene mutation misdiagnosed as Hirschsprung disease
Yuhao LIU ; Yueyi ZHANG ; Xiaoyin BAI ; Yang CHEN ; Weixun ZHOU ; Xiaoqing LI
Basic & Clinical Medicine 2024;44(6):873-876
Objective To discuss the clinical features,differential diagnosis and complication treatment of a patient with genetic visceral myopathy.Methods Medical history,physical examination and laboratory results of the patient were collected in detail.The pathology of previous surgery was reviewed.The patient's peripheral blood DNA was extracted and submitted for whole-exome sequencing.Subsequent Sanger sequencing was used to complete the pedigree verification of the mutation site.Results The patient was a young female presented with repeated in-complete intestinal obstruction since early childhood.She used to be misdiagnosed as Hirschsprung's disease for a long period and underwent multiple gastrointestinal segment resections.Her intestinal obstruction symptoms were temporarily relieved by surgeries,but severe diarrhea,mucus and bloody stools and malnutrition gradually occurred after the last operation.The patient had bacterial overgrowth in small intestinal tract and followed by intestinal op-portunistic infections secondary to chronic intestinal pseudo-obstruction.The symptoms improved after anti-infection and enteral element diet treatment.Further pathological consultation and whole-exome gene sequencing confirmed the diagnosis of visceral myopathy related to ATCG2 R148L mutation.Conclusions Patients with early onset of chronic intestinal pseudo-obstruction and have poor response to conventional treatment are recommended to perform genetic test.The patients with hereditary visceral myopathy are susceptible to opportunistic intestinal infection.At-tentions should also be paid to the prevention and treatment of complications to avoid unnecessary surgery.

Result Analysis
Print
Save
E-mail