1.Treatment of Edema with Zhulingtang: A Review
Yinuo LI ; Liheng LI ; Yufei ZHANG ; Shurui ZHAO ; Youcai YUAN ; Jie GAO ; Renshuai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):266-275
Edema, as a common pathological phenomenon, is essentially the abnormal accumulation of body fluids in the interstitial spaces of human tissues and is often a direct manifestation of various underlying diseases, such as heart failure, impaired renal filtration function, or liver metabolic disorders. In the Western medical system, strategies for treating edema primarily focus on the use of diuretics to promote the excretion of excess fluid in the body, while simultaneously addressing the underlying causes through targeted treatment. However, long-term reliance on the use of diuretics may lead to a decrease in drug sensitivity and induce side effects, including electrolyte disorders such as hypokalemia and hypercalcemia, posing a potential threat to patients' overall health. Compared with Western medicine, traditional Chinese medicine (TCM) has demonstrated well-recognized and sustained efficacy in treating edema with its unique theoretical system. Zhulingtang, as a classic and commonly used TCM formula, is widely applied as it can effectively relieve edema and related symptoms. In recent years, ongoing in-depth studies on the treatment of edema with Zhulingtang have revealed multiple mechanisms of action of Zhulingtang, including the regulation of water metabolism and the reduction of inflammatory responses, thereby providing a solid theoretical basis for clinical practice. This review summarized the research progress on the treatment of edema with Zhulingtang in recent years and analyzed the active ingredients and action pathways of Zhulingtang. Additionally, the primary mechanisms of action and efficacy were systematically analyzed, so as to provide references for the clinical application of Zhulingtang in treating various types of edema, such as cardiogenic edema, renal edema, and hepatogenic edema. This review aims to offer theoretical support and practical guidance for clinicians in deciding treatment approaches, as well as references for subsequent in-depth studies, thereby promoting further development of TCM in the treatment of edema.
2.Treatment of Edema with Zhulingtang: A Review
Yinuo LI ; Liheng LI ; Yufei ZHANG ; Shurui ZHAO ; Youcai YUAN ; Jie GAO ; Renshuai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):266-275
Edema, as a common pathological phenomenon, is essentially the abnormal accumulation of body fluids in the interstitial spaces of human tissues and is often a direct manifestation of various underlying diseases, such as heart failure, impaired renal filtration function, or liver metabolic disorders. In the Western medical system, strategies for treating edema primarily focus on the use of diuretics to promote the excretion of excess fluid in the body, while simultaneously addressing the underlying causes through targeted treatment. However, long-term reliance on the use of diuretics may lead to a decrease in drug sensitivity and induce side effects, including electrolyte disorders such as hypokalemia and hypercalcemia, posing a potential threat to patients' overall health. Compared with Western medicine, traditional Chinese medicine (TCM) has demonstrated well-recognized and sustained efficacy in treating edema with its unique theoretical system. Zhulingtang, as a classic and commonly used TCM formula, is widely applied as it can effectively relieve edema and related symptoms. In recent years, ongoing in-depth studies on the treatment of edema with Zhulingtang have revealed multiple mechanisms of action of Zhulingtang, including the regulation of water metabolism and the reduction of inflammatory responses, thereby providing a solid theoretical basis for clinical practice. This review summarized the research progress on the treatment of edema with Zhulingtang in recent years and analyzed the active ingredients and action pathways of Zhulingtang. Additionally, the primary mechanisms of action and efficacy were systematically analyzed, so as to provide references for the clinical application of Zhulingtang in treating various types of edema, such as cardiogenic edema, renal edema, and hepatogenic edema. This review aims to offer theoretical support and practical guidance for clinicians in deciding treatment approaches, as well as references for subsequent in-depth studies, thereby promoting further development of TCM in the treatment of edema.
3.Climate on the incidence of hypertension and angiotensin gene polymorphisms in Tibetan populations in Gannan Area
Wen YAN ; Ruidi CHEN ; Yufei ZHAO ; Shuzhen HAN ; Xingjie LI
Journal of Public Health and Preventive Medicine 2025;36(4):114-117
Objective To investigate the effect of angiotensinogen (AGT), angiotensin-converting enzyme (ACE) and AngII receptor (ATR) gene polymorphisms combined with climatic factors on the incidence of essential hypertension (EH) in Tibetan population in Gannan area. Methods A follow-up study was conducted to select 671 Tibetan people in Gannan area who were physically examined in April 2019 at the Health Management Center of the Second Hospital of Lanzhou University and agreed to be enrolled as a fixed cohort, and the blood pressure values of the enrolled subjects were measured after 3.5 years of follow-up, and a total of 501 cases were obtained. At the same time, the peripheral blood of all subjects was collected and the polymorphisms of AGT, ACE and ATR genes were detected by gene chip technology, and the possible interactions were analyzed by logistic regression model, fork generation method and multifactor-dimensionality reduction (MDR). Results Sunshine time was a protective factor for the incidence of hypertension in the Tibetan population of Gannan (OR=0.781), while relative humidity (OR=1.182), air pressure (OR=1.338) and temperature (OR=1.449) were the risk factors for the incidence of hypertension. According to the results of partial correlation analysis, temperature had no effect on the incidence of hypertension after controlling air pressure. There was an additive interaction between high air pressure and the polymorphisms of rs699 (OR=1.650, 95%CI: 1.293-2.399, P<0.001) and rs5049 (OR=1.711, 95%CI: 1.337-4.920, P<0.001) genes of AGT gene; there was a multiplicative interaction between relative humidity and rs699 (OR=0.472, 95%CI: 0.120-0.783, P<0.05);there was a multiplicative interactions between the altitude ≥ 3000m and rs699 (OR=1.503, 95%CI: 1.220-3.174, P<0.01), rs5049 (OR=1.673, 95%CI: 1.380-3.961, P<0.001) or rs2148582 (OR=0.519, 95%CI: 0.284-0.716, P<0.05).However, there was no interaction between climatic factors and ACE or ATR gene polymorphisms on the incidence of hypertension. Conclusion Climatic factors and altitude ≥3 000 m are closely related to the incidence of hypertension in the Tibetan population of Gannan area, and the interaction between AGT gene polymorphisms and climatic factors affects the incidence of hypertension in the population of this area.
4.Diagnosis and treatment of colorectal liver metastases: Chinese expert consensus-based multidisciplinary team (2024 edition).
Wen ZHANG ; Xinyu BI ; Yongkun SUN ; Yuan TANG ; Haizhen LU ; Jun JIANG ; Haitao ZHOU ; Yue HAN ; Min YANG ; Xiao CHEN ; Zhen HUANG ; Weihua LI ; Zhiyu LI ; Yufei LU ; Kun WANG ; Xiaobo YANG ; Jianguo ZHOU ; Wenyu ZHANG ; Muxing LI ; Yefan ZHANG ; Jianjun ZHAO ; Aiping ZHOU ; Jianqiang CAI
Chinese Medical Journal 2025;138(15):1765-1768
5.Tumor-intrinsic PRMT5 upregulates FGL1 via methylating TCF12 to inhibit CD8+ T-cell-mediated antitumor immunity in liver cancer.
Jiao SUN ; Hongfeng YUAN ; Linlin SUN ; Lina ZHAO ; Yufei WANG ; Chunyu HOU ; Huihui ZHANG ; Pan LV ; Guang YANG ; Ningning ZHANG ; Wei LU ; Xiaodong ZHANG
Acta Pharmaceutica Sinica B 2025;15(1):188-204
Protein arginine methyltransferase 5 (PRMT5) acts as an oncogene in liver cancer, yet its roles and in-depth molecular mechanisms within the liver cancer immune microenvironment remain mostly undefined. Here, we demonstrated that disruption of tumor-intrinsic PRMT5 enhances CD8+ T-cell-mediated antitumor immunity both in vivo and in vitro. Further experiments verified that this effect is achieved through downregulation of the inhibitory immune checkpoint molecule, fibrinogen-like protein 1 (FGL1). Mechanistically, PRMT5 catalyzed symmetric dimethylation of transcription factor 12 (TCF12) at arginine 554 (R554), prompting the binding of TCF12 to FGL1 promoter region, which transcriptionally activated FGL1 in tumor cells. Methylation deficiency at TCF12-R554 residue downregulated FGL1 expression, which promoted CD8+ T-cell-mediated antitumor immunity. Notably, combining the PRMT5 methyltransferase inhibitor GSK591 with PD-L1 blockade efficiently inhibited liver cancer growth and improved overall survival in mice. Collectively, our findings reveal the immunosuppressive role and mechanism of PRMT5 in liver cancer and highlight that targeting PRMT5 could boost checkpoint immunotherapy efficacy.
6.Succinylation of tumor suppressor PPP2R1A K541 by HAT1 converses the role in modulation of gluconeogenesis/lipogenesis remodeling to display oncogene function.
Guang YANG ; Yufei WANG ; Hongfeng YUAN ; Huihui ZHANG ; Lina ZHAO ; Chunyu HOU ; Pan LV ; Jihui HAO ; Xiaodong ZHANG
Acta Pharmaceutica Sinica B 2025;15(10):5294-5311
Metabolic reprogramming plays a central role in tumors. However, the key drivers modulating reprogramming of gluconeogenesis/lipogenesis are poorly understood. Here, we try to identify the mechanism by which histone acetyltransferase 1 (HAT1) confers reprogramming of gluconeogenesis/lipogenesis in liver cancer. Diethylnitrosamine (DEN)/carbon tetrachloride (CCl4)-induced hepatocarcinogenesis was hardly observed in HAT1-knockout mice. Multi-omics identified that HAT1 modulated gluconeogenesis and lipogenesis in liver. Protein phosphatase 2 scaffold subunit alpha (PPP2R1A) promoted gluconeogenesis and inhibited lipogenesis by phosphoenolpyruvate carboxykinase 1 (PCK1) serine 90 dephosphorylation to suppress the tumor growth. HAT1 succinylated PPP2R1A at lysine 541 (K541) to block the assembly of protein phosphatase 2A (PP2A) holoenzyme and interaction with PCK1, resulting in the depression of dephosphorylation of PCK1. HAT1-succinylated PPP2R1A contributed to the remodeling of gluconeogenesis/lipogenesis by PCK1 serine 90 phosphorylation, leading to the inhibition of gluconeogenic enzyme activity and activating sterol regulatory element-binding protein 1 (SREBP1) nuclear accumulation-induced lipogenesis gene expression, which enhanced the tumor growth. In conclusion, succinylation of PPP2R1A lysine 541 by HAT1 converses the role in modulation of gluconeogenesis/lipogenesis remodeling through PCK1 S90 phosphorylation to support liver cancer. Our finding provides new insights into the mechanism by which post-translational modifications (PTMs) confer the conversion of tumor suppressor function to oncogene.
9.Advances and challenges in drug design against dental caries: Application of in silico approaches.
Zhongxin CHEN ; Xinyao ZHAO ; Hanyu ZHENG ; Yufei WANG ; Linglin ZHANG
Journal of Pharmaceutical Analysis 2025;15(6):101161-101161
Dental caries, a chronic disease characterized by tooth decay, occupies the second position in terms of disease burden and is primarily caused by cariogenic bacteria, especially Streptococcus mutans, because of its acidogenic, aciduric, and biofilm-forming capabilities. Developing novel targeted anti-virulence agents is always a focal point in caries control to overcome the limitations of conventional anti-virulence agents. The current study represents an up-to-date review of in silico approaches of drug design against dental caries, which have emerged more and more powerful complementary to biochemical attempts. Firstly, we categorize the in silico approaches into computer-aided drug design (CADD) and AI-assisted drug design (AIDD) and highlight the specific methods and models they contain respectively. Subsequently, we detail the design of anti-virulence drugs targeting single or multiple cariogenic virulence targets of S. mutans, such as glucosyltransferases (Gtfs), antigen I/II (AgI/II), sortase A (SrtA), the VicRK signal transduction system and superoxide dismutases (SODs). Finally, we outline the current opportunities and challenges encountered in this field to aid future endeavors and applications of CADD and AIDD in anti-virulence drug design.
10.Recombinant yeast-cell microcapsules carrying the DNA vaccine against enterotoxigenic Escherichia coli.
Xiafang ZHAO ; Lihong DU ; Baoxia MA ; Shaona JIA ; Yufei LIU ; Yufei ZHU ; Xiaotao MA ; Xiaojun YANG ; Kun XU
Chinese Journal of Biotechnology 2025;41(6):2388-2404
The enterotoxigenic Escherichia coli (ETEC) infection is a major factor restricting the development of animal husbandry. However, the abuse of antibiotics will lead to the antibiotic residues and emergence of antibiotic-resistant bacteria. The existing vaccines face challenges in stimulating intestinal immunity, demonstrating limited prevention effects. Therefore, it is indispensable to develop a new vaccine that is safe and suitable as a feed additive to activate intestinal immunity. This study constructed yeast-cell microcapsules (YCM) carrying the DNA vaccine against ETEC by genetic engineering. Furthermore, animal experiments were carried out to explore the regulatory effects of feeding YCM on the intestinal immune system and intestinal microbiota. Saccharomyces cerevisiae was selected as the oral delivery vehicle (microcapsules) of the DNA vaccine. The codon-optimized nucleic acid sequence of K88, the main antigen of mammal-derived ETEC, was synthesized, and the yeast shuttle vector containing the corresponding DNA vaccine expression cassette was constructed by DNA recombination. The recombinant strain of YCM was prepared by transforming JMY1. Additionally, the characteristics of the YCM strain and its feasibility as an oral vaccine were comprehensively evaluated by the fluorescence reporter assay, gastrointestinal fluid tolerance assay, intestinal epithelial cell adhesion assay, intestinal retention assessment, antiserum detection, and intestinal microbiota detection. The experimental results showed that the DNA vaccine expression cassette was expressed in mammals, and the recombinant strain of YCM could tolerate up to 8 hours of gastrointestinal fluid digestion and had good adhesion to intestinal epithelial cells. The results of mouse feeding experiments indicated that the recombinant strain of YCM could stay in the intestinal tract for at least two weeks, and the DNA vaccine expression cassette carried by YCM entered the intestinal immune system and triggered an immune response to induce the production of specific antibodies. Moreover, feeding YCM recombinant bacteria also improved the abundance of gut microbiota in mice, demonstrating a positive effect in regulating intestinal flora. In summary, we prepared the recombinant strain of YCM carrying the DNA vaccine against ETEC and comprehensively evaluated its characteristics and feasibility as an oral vaccine. Feeding the recombinant YCM could induce specific immune responses and regulate intestinal microbiota. The findings provide a reference for the immunoprevention of ETEC-related animal diseases.
Animals
;
Enterotoxigenic Escherichia coli/genetics*
;
Saccharomyces cerevisiae/metabolism*
;
Vaccines, DNA/genetics*
;
Mice
;
Escherichia coli Infections/immunology*
;
Escherichia coli Vaccines/genetics*
;
Capsules
;
Mice, Inbred BALB C
;
Female


Result Analysis
Print
Save
E-mail