1.Expression profile of circular RNA in inflammatory response in human bronchial epithelial cells induced by carbon black nanoparticles
Jiahao ZHANG ; Sijia ZHOU ; Zheng KUANG ; Zenghua QIN ; Liwen TAN ; Yueting SHAO
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(8):576-581
Objective:To explore the toxic effect of carbon black nanoparticles on human bronchial epithelial cells, and identify the differentially expressed circular RNA based on the full transcriptome high-throughput sequencing, so as to provide evidence for the development of biomarkers exposed to carbon black nanoparticles and their application on epigenetic toxicology.Methods:In June 2020, 16 HBE cells were treated with carbon black nanoparticles at concentrations of 20, 40 and 80 μg/ml, and 16 HBE cells without any intervention were used as the control group. The cytotoxicity of carbon black nanoparticles was detected by CCK8 and LDH experiments. Real-time quantitative fluorescent PCR (qRT-PCR) and ELISA were used to detect the changes of interleukin-6 (IL-6) and interleukin-8 (IL-6, IL-8) mRNA and protein levels of carbon black nanoparticles with concentration gradient after 72 h exposure. Western blot analysis was conducted to detect the expression levels of toll-like receptor 4 (TLR4), phosphorylated nuclear factor-κB (P-NF-κB), apoptosis-related speckled protein (ASC) and Caspase-1 associated with nuclear factor-κB. According to high-throughput sequencing results, differentially expressed Circrnas were screened and identified by qRT-PCR, and those with stable differentially expressed circrnas and the strongest association with the NF-κB pathway were selected for ring performance identification.Results:After being exposed to carbon black nanoparticles for 72 h, the activity of 16HBE cells decreased significantly ( P<0.05), and the release of lactate dehydrogenase increased significantly ( P<0.05). Compared with control group, mRNA expression levels of IL-6 and IL-8, protein levels of IL-6 and IL-8 were increased, and protein levels of TLR4, p-NF-κB, ASC and Caspase-1 were significantly up-regulated in 16 HBE cells of different concentrations, with statistical significance ( P<0.05). Compared with the control group, a total of 492 differentially expressed circular Rnas (|log2 FC|>1) were detected. Among the 5 differentially expressed ( P<0.05) circular Rnas, circ_002642 was selected as the object of subsequent research on circular Rnas, affter 72 hours of exposure to 80 μg/ml CBNPs, 16HBE cells showed signlficantly higher expression of circ_002642 ( P<0.05) . Conclusion:Carbon black nanoparticles can induce differentially expressed circular RNAs associated with inflammatory response in human bronchial epithelial cells.
2.Co-exposure of carbon black and cadmium induces autophagy and inflammation in human bronchial epithelial cells via PERK pathway
Rulin MAO ; Liting ZHENG ; Xiaohong LIANG ; Shaoxia LYU ; Yueting SHAO
Chinese Journal of Industrial Hygiene and Occupational Diseases 2024;42(1):1-9
Objective:To investigate the effects of carbon black and cadmium (Cd) combined exposure on autophagy and inflammatory response mediated by protein kinase R-like endoplasmic reticulum kinase (PERK) pathway in human bronchial epithelial (16HBE) cells.Methods:In January 2022, human bronchial epithelial (16HBE) cells were resuscitated and cultured. Carbon black nanoparticles (CBNPs) were oxidized to adsorb Cd ions to construct "CBNPs-Cd" complexes. CCK-8 assay was used to detect the effects of different concentrations and time combinations of CBNPs and Cd on the viability of 16HBE cells. The subsequent dose groups were exposed to 2 μg/ml Cd, 100 μg/ml CBNPs, 100 μg/ml CBNPs+2 μg/ml Cd for 24 h. The number of autophagosomes and autolysosomes was detected by transmission electron microscopy. Western blotting was used to detect the protein expressions of PERK, eukaryotic initiation factor 2α (eIf2α), activating transcription factor 4 (ATF4), sequestosome 1 (SQSTM1/P62), and microtubule-associated protein 1 light chain 3 (LC3). After PERK gene was silenced by siRNA technology, the changes of autophagy marker proteins P62 and LC3 were detected, and the expressions of inflammatory factors interleukin-6 (IL6) and interleukin-8 (IL8) were detected by fluorescence quantitative PCR technique. One-way ANOVA analysis was used to compare three groups or more. LSD test was used for comparison between two groups. Factorial analysis was used for multivariate component analysis. Results:There was no significant change in cell viability of 16HBE after 24 h exposure to CBNPs and Cd alone or combined ( P>0.05). Compared with the control group, the expressions of P62 and LC3 in 16HBE cells were significantly increased in the CBNPs and Cd alone/combined exposure group ( P<0.05), and the number of autophagosomes and autophagolysosomes in the combined exposure group was increased compared with other groups. Compared with the control group, CBNPs and Cd alone exposure group had no significant effects on p-PERK/PERK and p-eIf2α/eIf2α protein expression ( P>0.05). However, the protein expressions of p-PERK/PERK and p-eIf2α/eIf2α and ATF4 were all increased in the combined exposure group ( P<0.05), and the levels of IL6 and IL8 in 16HBE cells in the combined exposure group of CBNPs and Cd were significantly higher than those in the control group ( P<0.05). The levels of LC3 protein, IL6 and IL8 were decreased in the CBNPs-Cd combined exposure group after knockdown of PERK gene ( P<0.05). The results of factorial analysis showed that exposure to CBNPs and Cd had significant effects on the expression of P62, LC3 and IL6 ( P<0.05), but the interaction between the two chemicals had no statistical significance ( P>0.05) . Conclusion:CBNPs-Cd combined exposure may inhibit autophagy and increase inflammation in human bronchial epithelial cells through activation of PERK-eIf2α-ATF4 pathway.
3.Expression profile of circular RNA in inflammatory response in human bronchial epithelial cells induced by carbon black nanoparticles
Jiahao ZHANG ; Sijia ZHOU ; Zheng KUANG ; Zenghua QIN ; Liwen TAN ; Yueting SHAO
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(8):576-581
Objective:To explore the toxic effect of carbon black nanoparticles on human bronchial epithelial cells, and identify the differentially expressed circular RNA based on the full transcriptome high-throughput sequencing, so as to provide evidence for the development of biomarkers exposed to carbon black nanoparticles and their application on epigenetic toxicology.Methods:In June 2020, 16 HBE cells were treated with carbon black nanoparticles at concentrations of 20, 40 and 80 μg/ml, and 16 HBE cells without any intervention were used as the control group. The cytotoxicity of carbon black nanoparticles was detected by CCK8 and LDH experiments. Real-time quantitative fluorescent PCR (qRT-PCR) and ELISA were used to detect the changes of interleukin-6 (IL-6) and interleukin-8 (IL-6, IL-8) mRNA and protein levels of carbon black nanoparticles with concentration gradient after 72 h exposure. Western blot analysis was conducted to detect the expression levels of toll-like receptor 4 (TLR4), phosphorylated nuclear factor-κB (P-NF-κB), apoptosis-related speckled protein (ASC) and Caspase-1 associated with nuclear factor-κB. According to high-throughput sequencing results, differentially expressed Circrnas were screened and identified by qRT-PCR, and those with stable differentially expressed circrnas and the strongest association with the NF-κB pathway were selected for ring performance identification.Results:After being exposed to carbon black nanoparticles for 72 h, the activity of 16HBE cells decreased significantly ( P<0.05), and the release of lactate dehydrogenase increased significantly ( P<0.05). Compared with control group, mRNA expression levels of IL-6 and IL-8, protein levels of IL-6 and IL-8 were increased, and protein levels of TLR4, p-NF-κB, ASC and Caspase-1 were significantly up-regulated in 16 HBE cells of different concentrations, with statistical significance ( P<0.05). Compared with the control group, a total of 492 differentially expressed circular Rnas (|log2 FC|>1) were detected. Among the 5 differentially expressed ( P<0.05) circular Rnas, circ_002642 was selected as the object of subsequent research on circular Rnas, affter 72 hours of exposure to 80 μg/ml CBNPs, 16HBE cells showed signlficantly higher expression of circ_002642 ( P<0.05) . Conclusion:Carbon black nanoparticles can induce differentially expressed circular RNAs associated with inflammatory response in human bronchial epithelial cells.
4.Co-exposure of carbon black and cadmium induces autophagy and inflammation in human bronchial epithelial cells via PERK pathway
Rulin MAO ; Liting ZHENG ; Xiaohong LIANG ; Shaoxia LYU ; Yueting SHAO
Chinese Journal of Industrial Hygiene and Occupational Diseases 2024;42(1):1-9
Objective:To investigate the effects of carbon black and cadmium (Cd) combined exposure on autophagy and inflammatory response mediated by protein kinase R-like endoplasmic reticulum kinase (PERK) pathway in human bronchial epithelial (16HBE) cells.Methods:In January 2022, human bronchial epithelial (16HBE) cells were resuscitated and cultured. Carbon black nanoparticles (CBNPs) were oxidized to adsorb Cd ions to construct "CBNPs-Cd" complexes. CCK-8 assay was used to detect the effects of different concentrations and time combinations of CBNPs and Cd on the viability of 16HBE cells. The subsequent dose groups were exposed to 2 μg/ml Cd, 100 μg/ml CBNPs, 100 μg/ml CBNPs+2 μg/ml Cd for 24 h. The number of autophagosomes and autolysosomes was detected by transmission electron microscopy. Western blotting was used to detect the protein expressions of PERK, eukaryotic initiation factor 2α (eIf2α), activating transcription factor 4 (ATF4), sequestosome 1 (SQSTM1/P62), and microtubule-associated protein 1 light chain 3 (LC3). After PERK gene was silenced by siRNA technology, the changes of autophagy marker proteins P62 and LC3 were detected, and the expressions of inflammatory factors interleukin-6 (IL6) and interleukin-8 (IL8) were detected by fluorescence quantitative PCR technique. One-way ANOVA analysis was used to compare three groups or more. LSD test was used for comparison between two groups. Factorial analysis was used for multivariate component analysis. Results:There was no significant change in cell viability of 16HBE after 24 h exposure to CBNPs and Cd alone or combined ( P>0.05). Compared with the control group, the expressions of P62 and LC3 in 16HBE cells were significantly increased in the CBNPs and Cd alone/combined exposure group ( P<0.05), and the number of autophagosomes and autophagolysosomes in the combined exposure group was increased compared with other groups. Compared with the control group, CBNPs and Cd alone exposure group had no significant effects on p-PERK/PERK and p-eIf2α/eIf2α protein expression ( P>0.05). However, the protein expressions of p-PERK/PERK and p-eIf2α/eIf2α and ATF4 were all increased in the combined exposure group ( P<0.05), and the levels of IL6 and IL8 in 16HBE cells in the combined exposure group of CBNPs and Cd were significantly higher than those in the control group ( P<0.05). The levels of LC3 protein, IL6 and IL8 were decreased in the CBNPs-Cd combined exposure group after knockdown of PERK gene ( P<0.05). The results of factorial analysis showed that exposure to CBNPs and Cd had significant effects on the expression of P62, LC3 and IL6 ( P<0.05), but the interaction between the two chemicals had no statistical significance ( P>0.05) . Conclusion:CBNPs-Cd combined exposure may inhibit autophagy and increase inflammation in human bronchial epithelial cells through activation of PERK-eIf2α-ATF4 pathway.