1.Replacement of androgen receptor gene causes complete androgen insensitivity in a large family
Yingying QIN ; Xuan GAO ; Li YOU ; Yuan LI ; Junhao YAN ; Yueran ZHAO ; Zijiang CHEN
Chinese Journal of Obstetrics and Gynecology 2008;43(11):828-830
Objective To confirm the clinical diagnosis of complete androgen insensitivity syndrome (CAIS) by molecular genetic testing in a large family. Methods PCR was performed to amplify the coding region of androgen gene, followed by direct sequencing in the patients with CAIS and relatives in this family. Results A missense mutation Arg773His was identified in the patients (homozygous) and carriers(heterozygous). Conclusions Mutation Arg773His in the AR gene leads to CAIS in this family. Molecular genetic testing of CAIS facilitates not only prenatal genetic diagnosis but also preimplantation genetic diagnosis and offers genetic counseling for future pregnancies to abandon the transmission of the mutated X chromosome to the coming generation.
2.A FKBP5 mutation is associated with Paget's disease of bone and enhances osteoclastogenesis.
Bingru LU ; Yulian JIAO ; Yinchang WANG ; Jing DONG ; Muyun WEI ; Bin CUI ; Yafang SUN ; Laicheng WANG ; Bingchang ZHANG ; Zijiang CHEN ; Yueran ZHAO
Experimental & Molecular Medicine 2017;49(5):e336-
Paget's disease of bone (PDB) is a common metabolic bone disease that is characterized by aberrant focal bone remodeling, which is caused by excessive osteoclastic bone resorption followed by disorganized osteoblastic bone formation. Genetic factors are a critical determinant of PDB pathogenesis, and several susceptibility genes and loci have been reported, including SQSTM1, TNFSF11A, TNFRSF11B, VCP, OPTN, CSF1 and DCSTAMP. Herein, we report a case of Chinese familial PDB without mutations in known genes and identify a novel c.163G>C (p.Val55Leu) mutation in FKBP5 (encodes FK506-binding protein 51, FKBP51) associated with PDB using whole-exome sequencing. Mutant FKBP51 enhanced the Akt phosphorylation and kinase activity in cells. A study of osteoclast function using FKBP51V55L KI transgenic mice proved that osteoclast precursors from FKBP51V55L mice were hyperresponsive to RANKL, and osteoclasts derived from FKBP51V55L mice displayed more intensive bone resorbing activity than did FKBP51WT controls. The osteoclast-specific molecules tartrate-resistant acid phosphatase, osteoclast-associated receptor and transcription factor NFATC1 were increased in bone marrow-derived monocyte/macrophage cells (BMMs) from FKBP51V55L mice during osteoclast differentiation. However, c-fos expression showed no significant difference in the wild-type and mutant groups. Akt phosphorylation in FKBP51V55L BMMs was elevated in response to RANKL. In contrast, IκB degradation, ERK phosphorylation and LC3II expression showed no difference in wild-type and mutant BMMs. Micro-CT analysis revealed an intensive trabecular bone resorption pattern in FKBP51V55L mice, and suspicious osteolytic bone lesions were noted in three-dimensional reconstruction of distal femurs from mutant mice. These results demonstrate that the mutant FKBP51V55L promotes osteoclastogenesis and function, which could subsequently participate in PDB development.
Acid Phosphatase
;
Animals
;
Asian Continental Ancestry Group
;
Bone Diseases, Metabolic
;
Bone Remodeling
;
Bone Resorption
;
Femur
;
Humans
;
Mice
;
Mice, Transgenic
;
Osteitis Deformans*
;
Osteoblasts
;
Osteoclasts
;
Osteogenesis
;
Phosphorylation
;
Phosphotransferases
;
Tacrolimus Binding Proteins
;
Transcription Factors