1.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
2.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
3.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
4.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
5.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
6.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
7.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
8.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.