1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Overview of the amendments and revisions to the General Technical Requirements adopted by the Volume Ⅳ of the Chinese Pharmacopoeia 2025 Edition
ZHANG Jun ; NING Baoming ; WEI Shifeng ; SHEN Haoyu ; SHANG Yue ; ZHU Ran ; XU Xinyi ; CHEN Lei ; LIU Tingting ; MA Shuangcheng
Drug Standards of China 2025;26(1):034-044
To introduce the general thinking, guidelines, work objectives and elaboration process of the general technical requirements adopted by volume Ⅳ of the Chinese Pharmacopoeia 2025 Edition, and to summarize and figure out the main characteristics on dosage forms, physico-chemical testing, microbial and biological testing, reference standards and guidelines The newly revised general chapters of pharmacopoeia give full play to the normative and guiding role of the Chinese Pharmacopoeia standard, track the frontier dynamics of international drug regulatory science and the elaboration of monographs, expand the application of state-of-the-art technologies, and steadily promote the harmonization and unification with the ICH guidelines; further enhance the overall capacity of TCM quality control, actively implement the 3 R principles on animal experiments, and practice the concept of environmental-friendly; replace and/or reduce the use of toxic and hazardous reagents, strengthen the requirements of drug safety control This paper aims to provide a full-view perspective for the comprehensive, correct understanding and accurate implementation of general technical requirements included in the Chinese Pharmacopoeia 2025 Edition.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Analysis of pollution of PM 2.5 in children s bedrooms caused by using solid fuels and the influencing factors
ZHENG Ping, SHI Chunli, XIN Shuzhi, CHEN Shunqiang, SHEN Yue, ZHANG Bei, XU Ning, WANG Qiang
Chinese Journal of School Health 2025;46(7):932-936
Objective:
To investigate the indoor fine particulate matter (PM 2.5 ) pollution and its influencing factors in children s bedrooms using solid fuel, so as to provide evidence for effective strategy to reduce PM 2.5 pollution.
Methods:
From December 2019 to November 2020, 198 households (108 in the north, 90 in the south) from two pilots in the north(Jiamusi in Heilongjiang Province) and south of China (Mianyang in Sichuan Province) were selected, and status of solid fuels using were obtained through home visits, dynamic changes in PM 2.5 concentrations in children s bedrooms were monitored by using real time online instruments, and the influencing factors of PM 2.5 pollution were analyzed by using a mixed effects model.
Results:
During the monitoring period, the daily PM 2.5 concentrations in the northern and southern pilot were 78.33 (40.50, 154.80) and 38.54(26.20, 58.46) μg/m 3, respectively, exceeding standard rates of 44.57% and 33.22%. During the heating period, the daily PM 2.5 concentrations in the northern and southern pilot were 212.50(133.60,244.10) and 104.42(73.97, 134.90) μg/m 3, respectively, with over standard rates of 96.75% and 86.96%. The mixed effects model analysis results showed that children s bedroom PM 2.5 concentrations were associated with solid fuel usage duration, window opening time, room layout (shared entrance door between kitchen and bedroom), indoor smoking, indoor humidity, and solid fuel use in the bedroom ( β =0.19, -0.05, 1.20, 0.43, 0.02, 0.35, all P <0.05).
Conclusion
Solid fuel combustion significantly comtributes to PM 2.5 pollution in children s bedrooms, with more pronounced impacts observed in northern China compared to southern regions.
6.Effect of Eucommiae Cortex extract mediated by ERβ/JNK pathway on learning and memory ability of APP/PS1 double-transgenic mice.
Yue LI ; Li-Li ZHANG ; Can ZHAO ; Hong-Mei ZHAO ; Yan WANG ; Jin-Lei FU ; Jie ZHANG ; Ning ZHANG ; Hong-Dan XU
China Journal of Chinese Materia Medica 2025;50(2):285-293
To study the ameliorative effect of Eucommiae Cortex extract on spatial learning disabilities in APP/PS1 double-transgenic mice and explore its relationship with estrogen receptor β(ERβ)/c-Jun N-terminal kinase(JNK) signaling pathway, sixty 3-month-old male APP/PS1 mice were randomly divided into a model group, an anti-brain failure capsule group(0.585 g·kg~(-1)), a donepezil hydrochloride group(0.65 mg·kg~(-1)), and a Eucommiae Cortex extract group(1.3 g·kg~(-1)), and 15 C57BL/6 mice of the same genetic background were set as WT control group. The learning and memory ability of mice was assessed by the Morris water maze test(MWM), the passive avoidance test(PAT), and the novel object recognition test(NOR). The histomorphological and cellular ultrastructural features of the hippocampal region of the mice were observed by hematoxylin-eosin(HE) staining and transmission electron microscopy(TEM); the molecular docking validation of the key active ingredients and the key targets was performed by using AutoDock Vina software, and the immunohistochemical method(IHC) was used to detect the ERβ expression in the dentate gyrus(DG) area of mouse hippocampus. Western blot(WB) was utilized to detect the expression of ERβ, p-JNK, and JNK in mouse hippocampal area. Compared with those in the WT control group, the results of behavioral experiments showed that the latency of the mice in the model group was significantly increased, the number of platform traversals, and the target quadrant residence time were significantly decreased in the MWM. The evasion latency was significantly reduced, and the number of errors was significantly increased in the PAT. The index of recognition of novel objects was significantly reduced in the NOR. The results of HE staining indicated that the hippocampal area of mice in the model group showed a decrease in the number of neurons, disorganization of pyramidal cell arrangement, nucleus consolidation, and other changes. TEM results showed that some neuronal nuclei in the hippocampal area had a consolidated state, slightly thickened and aberrant nuclear membranes, and fewer intracytoplasmic nidus bodies; the IHC results showed that the expression of ERβ in the hippocampal DG area of the mice was reduced. The WB results showed that the ERβ expression in the hippocampal tissue was decreased, and the p-JNK/JNK level was elevated. Compared with the model group, the Eucommiae Cortex extract group showed a significant decrease in latency, and increase in number of platform traversals and target quadrant residence time in the MWM, a significant increase in evasion latency and decrease in number of errors in the PAT, and a significant increase in the index of recognition of novel objects in the NOR. In addition, there was an increase in the number of neurons in the hippocampal area of mice. The pyramidal cells tended to be arranged in an orderly manner; the nuclei of neurons in the hippocampal area were in a better state; the expression of ERβ in the hippocampal DG area of the mice was elevated; the expression of ERβ in the hippocampal tissue was elevated, and the level of p-JNK/JNK was reduced. The effects of donepezil hydrochloride group and anti-brain failure capsule on APP/PS1 mice in terms of behavioral, HE, and TEM indexes were similar to those of Eucommiae Cortex extract, and there was no significant difference between donepezil hydrochloride group and the model group in IHC and WB experiments, and the results of molecular docking indicated that the estrogen-like components in Eucommiae Cortex extract were tightly bound to ERβ. In conclusion, the binding of Eucommiae Cortex extract to estrogen receptors, regulation of ERβ expression, and activation of ERβ/JNK signaling pathway may be one of the key mechanisms by which it improves the learning and memory ability of APP/PS1 mice.
Animals
;
Male
;
Mice
;
Mice, Transgenic
;
Memory/drug effects*
;
Mice, Inbred C57BL
;
Estrogen Receptor beta/genetics*
;
Eucommiaceae/chemistry*
;
Alzheimer Disease/psychology*
;
Amyloid beta-Protein Precursor/metabolism*
;
Presenilin-1/metabolism*
;
Humans
;
MAP Kinase Signaling System/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hippocampus/metabolism*
;
Maze Learning/drug effects*
;
Learning/drug effects*
7.Research progress on the relationship between anemia and neonatal necrotizing enterocolitis
Zhi-Yue DENG ; Feng-Dan XU ; Xiao-Guang HE ; Ning LI
Chinese Journal of Contemporary Pediatrics 2024;26(6):646-651
Neonatal necrotizing enterocolitis(NEC)is the most common inflammatory intestinal disease in preterm infants,with a high incidence and mortality rate.The etiology and mechanisms of NEC are not yet fully understood,and multiple factors contribute to its occurrence and development.Recent studies have found that anemia is a risk factor for NEC in neonates,but the specific pathogenic mechanism remains unclear.This article reviews recent research on the relationship between anemia and NEC,providing a reference for further understanding the impact of anemia on intestinal injury and its association with NEC.
8.Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome (version 2024)
Junyu WANG ; Hai JIN ; Danfeng ZHANG ; Rutong YU ; Mingkun YU ; Yijie MA ; Yue MA ; Ning WANG ; Chunhong WANG ; Chunhui WANG ; Qing WANG ; Xinyu WANG ; Xinjun WANG ; Hengli TIAN ; Xinhua TIAN ; Yijun BAO ; Hua FENG ; Wa DA ; Liquan LYU ; Haijun REN ; Jinfang LIU ; Guodong LIU ; Chunhui LIU ; Junwen GUAN ; Rongcai JIANG ; Yiming LI ; Lihong LI ; Zhenxing LI ; Jinglian LI ; Jun YANG ; Chaohua YANG ; Xiao BU ; Xuehai WU ; Li BIE ; Binghui QIU ; Yongming ZHANG ; Qingjiu ZHANG ; Bo ZHANG ; Xiangtong ZHANG ; Rongbin CHEN ; Chao LIN ; Hu JIN ; Weiming ZHENG ; Mingliang ZHAO ; Liang ZHAO ; Rong HU ; Jixin DUAN ; Jiemin YAO ; Hechun XIA ; Ye GU ; Tao QIAN ; Suokai QIAN ; Tao XU ; Guoyi GAO ; Xiaoping TANG ; Qibing HUANG ; Rong FU ; Jun KANG ; Guobiao LIANG ; Kaiwei HAN ; Zhenmin HAN ; Shuo HAN ; Jun PU ; Lijun HENG ; Junji WEI ; Lijun HOU
Chinese Journal of Trauma 2024;40(5):385-396
Traumatic supraorbital fissure syndrome (TSOFS) is a symptom complex caused by nerve entrapment in the supraorbital fissure after skull base trauma. If the compressed cranial nerve in the supraorbital fissure is not decompressed surgically, ptosis, diplopia and eye movement disorder may exist for a long time and seriously affect the patients′ quality of life. Since its overall incidence is not high, it is not familiarized with the majority of neurosurgeons and some TSOFS may be complicated with skull base vascular injury. If the supraorbital fissure surgery is performed without treatment of vascular injury, it may cause massive hemorrhage, and disability and even life-threatening in severe cases. At present, there is no consensus or guideline on the diagnosis and treatment of TSOFS that can be referred to both domestically and internationally. To improve the understanding of TSOFS among clinical physicians and establish standardized diagnosis and treatment plans, the Skull Base Trauma Group of the Neurorepair Professional Committee of the Chinese Medical Doctor Association, Neurotrauma Group of the Neurosurgery Branch of the Chinese Medical Association, Neurotrauma Group of the Traumatology Branch of the Chinese Medical Association, and Editorial Committee of Chinese Journal of Trauma organized relevant experts to formulate Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome ( version 2024) based on evidence of evidence-based medicine and clinical experience of diagnosis and treatment. This consensus puts forward 12 recommendations on the diagnosis, classification, treatment, efficacy evaluation and follow-up of TSOFS, aiming to provide references for neurosurgeons from hospitals of all levels to standardize the diagnosis and treatment of TSOFS.
9.Establishment of HPLC fingerprints and content determination of eight constituents for freeze-dried powder of Yinhuo Decoction
Jing HU ; Ya-Ming DING ; Shuang LIU ; Yue QIAO ; Yue ZHANG ; Hong-Dan XU ; Ning ZHANG ; Ji-Hui ZHAO
Chinese Traditional Patent Medicine 2024;46(8):2499-2505
AIM To establish the HPLC fingerprints for freeze-dried powder of Yinhuo Decoction,and to determine the contents of rehmannitin D,methylophiopogonanone A,verbascoside,protocatechuic acid,catalpol,schisandrol A,schisandrin B,schisandrin A.METHODS The fingerprint esablishment was performed on a 30℃thermostatic Supersil AQ18 column(4.6 mm×250 mm,5 μm),with the mobile phase comprising of acetonitrile-0.1%phosphoric acid flowing at 1.0 mL/min in a gradient elution manner,and the detection wavelength was set at 230 nm.The UPLC-MS/MS content determination was performed on a 30℃thermostatic Alphasil VC-C18 column(2.1 mm×100 mm,2.5 μm),with the mobile phase comprising of acetonitrile-0.1%formic acid flowing at 0.3 mL/min in a gradient elution manner,and electron spray ionization source was adopted in positive and negative ion scanning with multiple reaction monitoring mode.RESULTS There were 17 common peaks in the fingerprints for 10 batches of freeze-dried powder with the similarities of more than 0.90.and piloside,crystal blue glycoside,deacetylated caryoside schisandrin A were identified.Eight constituents showed good linear relationships within their own ranges(R2>0.990 6),whose average recoveries were 98.7%-101.1%with the RSDs of 2.0%-5.2%.CONCLUSION The combination of fingerprints and content determination can completely characterize the quality of Yinhuo Decoction reference sample,thus provide a reference for the quality evaluation of its key chemical properties.
10.Identification of key ferroptosis genes in paraspinal muscle degeneration based on RNA sequencing and bioinformatics analysis
Chunhong ZHANG ; Hongchao HUANG ; Yue LIU ; Lilong DU ; Haiwei XU ; Ning LI ; Yongjin LI
Tianjin Medical Journal 2024;52(9):991-995
Objective To explore the gene expression profile in paraspinal muscle degeneration(PMD)and identify key ferroptosis genes.Methods RNA sequencing was performed on paraspinal muscle tissue of 3 normal and 3 PMD patients respectively to obtain differentially expressed genes.Through protein-protein interaction(PPI)and gene functional enrichment analysis,the intersection of ferroptosis genes was identified to identify key hub genes associated with ferroptosis.The diagnostic value for PMD disease was analyzed by receiver operating characteristic(ROC)curves.Results A total of 292 differentially expressed genes were identified in PMD.Among them,125 genes were significantly downregulated and 167 genes were significantly upregulated.Bioinformatics analysis revealed that 14 differentially expressed genes were associated with ferroptosis.Among them,ferroptosis genes MUC1,ATF3 and CDKN1A were key hub genes with good specificity and sensitivity for diagnosing PMD.Functional enrichment analysis revealed that they may mediate the occurrence and progression of PMD by regulating cell apoptosis,ferroptosis and skeletal muscle tissue development and differentiation.Conclusion Ferroptosis genes MUC1,ATF3 and CDKN1A can serve as biomarkers for diagnosing PMD,providing theoretical basis for decoding the pathological mechanism of PMD and developing new drugs.


Result Analysis
Print
Save
E-mail