1.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
2.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
3.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
4.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
5.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.
6.Changing resistance profiles of Staphylococcus isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yuling XIAO ; Mei KANG ; Yi XIE ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(5):570-580
Objective To investigate the changing distribution and antibiotic resistance profiles of clinical isolates of Staphylococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Staphylococcus according to the unified protocol of CHINET(China Antimicrobial Surveillance Network)using disk diffusion method and commercial automated systems.The CHINET antimicrobial resistance surveillance data from 2015 to 2021 were interpreted according to the 2021 CLSI breakpoints and analyzed using WHONET 5.6.Results During the period from 2015 to 2021,a total of 204,771 nonduplicate strains of Staphylococcus were isolated,including 136,731(66.8%)strains of Staphylococcus aureus and 68,040(33.2%)strains of coagulase-negative Staphylococcus(CNS).The proportions of S.aureus isolates and CNS isolates did not show significant change.S.aureus strains were mainly isolated from respiratory specimens(38.9±5.1)%,wound,pus and secretions(33.6±4.2)%,and blood(11.9±1.5)%.The CNS strains were predominantly isolated from blood(73.6±4.2)%,cerebrospinal fluid(12.1±2.5)%,and pleural effusion and ascites(8.4±2.1)%.S.aureus strains were mainly isolated from the patients in ICU(17.0±7.3)%,outpatient and emergency(11.6±1.7)%,and department of surgery(11.2±0.9)%,whereas CNS strains were primarily isolated from the patients in ICU(32.2±9.7)%,outpatient and emergency(12.8±4.7)%,and department of internal medicine(11.2±1.9)%.The prevalence of methicillin-resistant strains was 32.9%in S.aureus(MRSA)and 74.1%in CNS(MRCNS).Over the 7-year period,the prevalence of MRSA decreased from 42.1%to 29.2%,and the prevalence of MRCNS decreased from 82.1%to 68.2%.MRSA showed higher resistance rates to all the antimicrobial agents tested except trimethoprim-sulfamethoxazole than methicillin-susceptible S.aureus(MSSA).Over the 7-year period,MRSA strains showed decreasing resistance rates to gentamicin,rifampicin,and levofloxacin,MRCNS showed decreasing resistance rates to gentamicin,erythromycin,rifampicin,and trimethoprim-sulfamethoxazole,but increasing resistance rate to levofloxacin.No vancomycin-resistant strains were detected.The prevalence of linezolid-resistant MRCNS increased from 0.2%to 2.3%over the 7-year period.Conclusions Staphylococcus remains the major pathogen among gram-positive bacteria.MRSA and MRCNS were still the principal antibiotic-resistant gram-positive bacteria.No S.aureus isolates were found resistant to vancomycin or linezolid,but linezolid-resistant strains have been detected in MRCNS isolates,which is an issue of concern.
7.Preoperative MRI parameters for prediction of early urinary continence after laparoscopic radical prostatectomy
Di GUAN ; Wen-Jing XIANG ; Yue-Xin LIU ; Dan LIU ; Yi-Qun GU ; Hao PING
National Journal of Andrology 2024;30(8):709-716
Objective:To explore the correlation of early urinary continence(UC)after laparoscopic radical prostatectomy(LRP)with relevant preoperative MRI parameters of the urinary tract structure and provide some theoretical evidence for screening the high-risk population with postoperative urinary incontinence.Methods:This study included 49 PCa patients aged 50-78 years trea-ted by LRP in Beijing Tongren Hospital from January 2015 to February 2021,and all followed up for 12 months.We collected the com-plete baseline data on the patients,the clinical data possibly related to early postoperative UC,the MRI anatomical parameters associat-ed with UC,and the data on the recovery of early postoperative UC.We recorded the number of urinary pads used,submitted the data obtained to SPSS 23.0 statistical analysis,and identified the possible relevant factors by univariate correlation analysis,followed by R40.3 or SPSS 23.0 multivariate logistic regression analysis of the included factors and the results of UC.Results:MRI images mani-fested that the prostate anteroposterior diameter averaged(4.0±1.11)cm,the transverse diameter(4.6±0.83)cm,the cephalo-caudal diameter 2.4-6.4 cm,the membranous urethral length(MUL)(13.16±3.52)mm,and the thickness of the urethral rhab-dosphincter(URS)1.08-4.37 mm.Multivariate analysis showed that age was significantly correlated with the recovery of UC at 1 month after LRP(P=0.035,OR=0.16),and so was the URS thickness at 3 months(P=0.011,OR=0.02),9 months(P=0.014,OR=0.039)and 12 months(P=0.014,OR=0.039).Urinary incontinence with the URS thickness ≤1.6 mm at 12 months after operation was found of a high severity(P=0.010,OR[95%CI]=0.858-6.240).The MUL was positively correla-ted with the recovery of UC at 9 months(P=0.024,OR=0.508)and 12 months(P=0.024,OR=0.508)postoperatively.Correlation analysis revealed that the prostate volume,prostate diameter and other factors included in this study were not significantly correlated to postoperative UC.Conclusion:The thickness of the URS is positively correlated with the recovery of early UC,the thinner the URS,the severer the UC,and so is MUL.Age is an independent risk factor for the recovery of UC at 1 month after LRP.These findings need to be further verified by more prospective studies with long-term follow-ups.
8.Identification of prognostic genes in prostate cancer by single-cell sequencing combined with Mendelian randomization
Di GUAN ; Long-Long FU ; Yue-Xin LIU ; Dan LIU ; Yi-Qun GU ; Hao PING
National Journal of Andrology 2024;30(11):974-981
Objective:To identify the key genes involved in the development and progression of prostate cancer(PCa)and those associated with the prognosis of the malignancy.Methods:We obtained the single-cell sequencing data on 4 cases of PCa from the GSE156632 database.Using R language and the Seurat package,we performed cell clustering and annotation,selected the subpop-ulations of epithelial cells for differential analysis after quality control and cell type identification,and conducted enrichment analysis of the identified differential genes using the Hiplot website.Then we downloaded the single nucleotide polymorphism(SNP)loci corre-sponding to the expression quantitative trait loci(eQTL)of these genes from the UK Biobank(UKB)database,and the clinical data and corresponding gene expression data on PCa patients from The Cancer Genome Atlas(TCGA)and Gene Expression Omnibus(GEO),followed by univariate COX regression analysis of the impact of the genes on the prognosis of the patients after Mendelian ran-domization.Results:A total of 1 566 genes were identified and subjected to enrichment analysis,which indicated that the differenti-al genes might be enriched in the Ras,apoptosis and oxidative phosphorylation signaling pathways.Subsequent Mendelian randomiza-tion revealed 74 potential causal genes among the 1 566 genes,and univariate COX regression analysis of the 74 genes identified 4 pos-sibly related genes FAM3B,JUNB,TMEM59,and KRT5.Comparison of the results of Mendelian randomization and univariate COX regression showed that KRT5 might be the most important gene influencing PCa.Conclusion:FAM3B,JUNB,TMEM59 and KRT5 may play a role in the progression of PCa,and KRT5 may potentially serve as a prognostic predictor and therapeutic target for the malig-nancy.
9.Efficacy and safety of various doses of hybutimibe monotherapy or in combination with atorvastatin for primary hypercholesterolemia: a multicenter, randomized, double-blind, double-dummy, parallel-controlled phase Ⅲ clinical trial.
Si Yu CAI ; Xiang GU ; Pei Jing LIU ; Rong Shan LI ; Jian Jun JIANG ; Shui Ping ZHAO ; Wei YAO ; Yi Nong JIANG ; Yue Hui YIN ; Bo YU ; Zu Yi YUAN ; Jian An WANG
Chinese Journal of Cardiology 2023;51(2):180-187
Objective: To evaluate the efficacy and safety of hybutimibe monotherapy or in combination with atorvastatin in the treatment of primary hypercholesterolemia. Methods: This was a multicenter, randomized, double-blind, double-dummy, parallel-controlled phase Ⅲ clinical trial of patients with untreated primary hypercholesterolemia from 41 centers in China between August 2015 and April 2019. Patients were randomly assigned, at a ratio of 1∶1∶1∶1∶1∶1, to the atorvastatin 10 mg group (group A), hybutimibe 20 mg group (group B), hybutimibe 20 mg plus atorvastatin 10 mg group (group C), hybutimibe 10 mg group (group D), hybutimibe 10 mg plus atorvastatin 10 mg group (group E), and placebo group (group F). After a dietary run-in period for at least 4 weeks, all patients were administered orally once a day according to their groups. The treatment period was 12 weeks after the first dose of the study drug, and efficacy and safety were evaluated at weeks 2, 4, 8, and 12. After the treatment period, patients voluntarily entered the long-term safety evaluation period and continued the assigned treatment (those in group F were randomly assigned to group B or D), with 40 weeks' observation. The primary endpoint was the percent change in low density lipoprotein cholesterol (LDL-C) from baseline at week 12. Secondary endpoints included the percent changes in high density lipoprotein cholesterol (HDL-C), triglyceride (TG), apolipoprotein B (Apo B) at week 12 and changes of the four above-mentioned lipid indicators at weeks 18, 24, 38, and 52. Safety was evaluated during the whole treatment period. Results: Totally, 727 patients were included in the treatment period with a mean age of (55.0±9.3) years old, including 253 males. No statistical differences were observed among the groups in demographics, comorbidities, and baseline blood lipid levels. At week 12, the percent changes in LDL-C were significantly different among groups A to F (all P<0.01). Compared to atorvastatin alone, hybutimibe combined with atorvastatin could further improve LDL-C, TG, and Apo B (all P<0.05). Furthermore, there was no significant difference in percent changes in LDL-C at week 12 between group C and group E (P=0.991 7). During the long-term evaluation period, there were intergroup statistical differences in changes of LDL-C, TG and Apo B at 18, 24, 38, and 52 weeks from baseline among the statins group (group A), hybutimibe group (groups B, D, and F), and combination group (groups C and E) (all P<0.01), with the best effect observed in the combination group. The incidence of adverse events was 64.2% in the statins group, 61.7% in the hybutimibe group, and 71.0% in the combination group during the long-term evaluation period. No treatment-related serious adverse events or adverse events leading to death occurred during the 52-week study period. Conclusions: Hybutimibe combined with atorvastatin showed confirmatory efficacy in patients with untreated primary hypercholesterolemia, which could further enhance the efficacy on the basis of atorvastatin monotherapy, with a good overall safety profile.
Male
;
Humans
;
Middle Aged
;
Atorvastatin/therapeutic use*
;
Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use*
;
Hypercholesterolemia/drug therapy*
;
Cholesterol, LDL/therapeutic use*
;
Anticholesteremic Agents/therapeutic use*
;
Treatment Outcome
;
Triglycerides
;
Apolipoproteins B/therapeutic use*
;
Double-Blind Method
;
Pyrroles/therapeutic use*
10.Treatment of patent ductus arteriosus in very preterm infants in China.
Ai Min QIAN ; Rui CHENG ; Xin Yue GU ; Rong YIN ; Rui Miao BAI ; Juan DU ; Meng Ya SUN ; Ping CHENG ; K L E E shoo K LEE ; Li Zhong DU ; Yun CAO ; Wen Hao ZHOU ; You Yan ZHAO ; Si Yan JIANG
Chinese Journal of Pediatrics 2023;61(10):896-901
Objective: To describe the current status and trends in the treatment of patent ductus arteriosus (PDA) among very preterm infants (VPI) admitted to the neonatal intensive care units (NICU) of the Chinese Neonatal Network (CHNN) from 2019 to 2021, and to compare the differences in PDA treatment among these units. Methods: This was a cross-sectional study based on the CHNN VPI cohort, all of 22 525 VPI (gestational age<32 weeks) admitted to 79 tertiary NICU within 3 days of age from 2019 to 2021 were included. The overall PDA treatment rates were calculated, as well as the rates of infants with different gestational ages (≤26, 27-28, 29-31 weeks), and pharmacological and surgical treatments were described. PDA was defined as those diagnosed by echocardiography during hospitalization. The PDA treatment rate was defined as the number of VPI who had received medication treatment and (or) surgical ligation of PDA divided by the number of all VPI. Logistic regression was used to investigate the changes in PDA treatment rates over the 3 years and the differences between gestational age groups. A multivariate Logistic regression model was constructed to compute the standardized ratio (SR) of PDA treatment across different units, to compare the rates after adjusting for population characteristics. Results: A total of 22 525 VPI were included in the study, with a gestational age of 30.0 (28.6, 31.0) weeks and birth weight of 1 310 (1 100, 1 540) g; 56.0% (12 615) of them were male. PDA was diagnosed by echocardiography in 49.7% (11 186/22 525) of all VPI, and the overall PDA treatment rate was 16.8% (3 795/22 525). Of 3 762 VPI who received medication treatment, the main first-line medication used was ibuprofen (93.4% (3 515/3 762)) and the postnatal day of first medication treatment was 6 (4, 10) days of age; 59.3% (2 231/3 762) of the VPI had been weaned from invasive respiratory support during the first medication treatment, and 82.2% (3 092/3 762) of the infants received only one course of medication treatment. A total of 143 VPI underwent surgery, which was conducted on 32 (22, 46) days of age. Over the 3 years from 2019 to 2021, there was no significant change in the PDA treatment rate in these VPI (P=0.650). The PDA treatment rate decreased with increasing gestational age (P<0.001). The PDA treatment rates for VPI with gestational age ≤26, 27-28, and 29-31 weeks were 39.6% (688/1 737), 25.9% (1 319/5 098), and 11.4% (1 788/15 690), respectively. There were 61 units having a total number of VPI≥100 cases, and their rates of PDA treatment were 0 (0/116)-47.4% (376/793). After adjusting for population characteristics, the range of standardized ratios for PDA treatment in the 61 units was 0 (95%CI 0-0.3) to 3.4 (95%CI 3.1-3.8). Conclusions: From 2019 to 2021, compared to the peers in developed countries, VPI in CHNN NICU had a different PDA treatment rate; specifically, the VPI with small birth gestational age had a lower treatment rate, while the VPI with large birth gestational age had a higher rate. There are significant differences in PDA treatment rates among different units.
Infant
;
Infant, Newborn
;
Male
;
Humans
;
Female
;
Ductus Arteriosus, Patent/drug therapy*
;
Infant, Premature
;
Cross-Sectional Studies
;
Ibuprofen/therapeutic use*
;
Infant, Very Low Birth Weight
;
Persistent Fetal Circulation Syndrome
;
Infant, Premature, Diseases/therapy*

Result Analysis
Print
Save
E-mail