1.Advances in nanocarrier-mediated cancer therapy: Progress in immunotherapy, chemotherapy, and radiotherapy.
Yue PENG ; Min YU ; Bozhao LI ; Siyu ZHANG ; Jin CHENG ; Feifan WU ; Shuailun DU ; Jinbai MIAO ; Bin HU ; Igor A OLKHOVSKY ; Suping LI
Chinese Medical Journal 2025;138(16):1927-1944
Cancer represents a major worldwide disease burden marked by escalating incidence and mortality. While therapeutic advances persist, developing safer and precisely targeted modalities remains imperative. Nanomedicines emerges as a transformative paradigm leveraging distinctive physicochemical properties to achieve tumor-specific drug delivery, controlled release, and tumor microenvironment modulation. By synergizing passive enhanced permeation and retention effect-driven accumulation and active ligand-mediated targeting, nanoplatforms enhance pharmacokinetics, promote tumor microenvironment enrichment, and improve cellular internalization while mitigating systemic toxicity. Despite revolutionizing cancer therapy through enhanced treatment efficacy and reduced adverse effects, translational challenges persist in manufacturing scalability, longterm biosafety, and cost-efficiency. This review systematically analyzes cutting-edge nanoplatforms, including polymeric, lipidic, biomimetic, albumin-based, peptide engineered, DNA origami, and inorganic nanocarriers, while evaluating their strategic advantages and technical limitations across three therapeutic domains: immunotherapy, chemotherapy, and radiotherapy. By assessing structure-function correlations and clinical translation barriers, this work establishes mechanistic and translational references to advance oncological nanomedicine development.
Humans
;
Neoplasms/radiotherapy*
;
Immunotherapy/methods*
;
Nanoparticles/chemistry*
;
Animals
;
Nanomedicine/methods*
;
Drug Delivery Systems/methods*
;
Drug Carriers/chemistry*
;
Radiotherapy/methods*
2.Molecular targeted therapy for progressive low-grade gliomas in children.
Yan-Ling SUN ; Miao LI ; Jing-Jing LIU ; Wen-Chao GAO ; Yue-Fang WU ; Lu-Lu WAN ; Si-Qi REN ; Shu-Xu DU ; Wan-Shui WU ; Li-Ming SUN
Chinese Journal of Contemporary Pediatrics 2025;27(6):682-689
OBJECTIVES:
To evaluate the efficacy of molecular targeted agents in children with progressive pediatric low-grade gliomas (pLGG).
METHODS:
A retrospective analysis was conducted on pLGG patients treated with oral targeted therapies at the Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, from July 2021. Treatment responses and safety profiles were assessed.
RESULTS:
Among the 20 enrolled patients, the trametinib group (n=12, including 11 cases with BRAF fusions and 1 case with BRAF V600E mutation) demonstrated 4 partial responses (33%) and 2 minor responses (17%), with a median time to response of 3.0 months. In the vemurafenib group (n=6, all with BRAF V600E mutation), 5 patients achieved partial responses (83%), showing a median time to response of 1.0 month. Comparative analysis revealed no statistically significant difference in progression-free survival rates between the two treatment groups (P>0.05). The median duration of clinical benefit (defined as partial response + minor response + stable disease) was 11.0 months for vemurafenib and 18.0 months for trametinib. Two additional cases, one with ATM mutation treated with olaparib for 24 months and one with NF1 mutation receiving everolimus for 21 months, discontinued treatment due to sustained disease stability. No severe adverse events were observed in any treatment group.
CONCLUSIONS
Molecular targeted therapy demonstrates clinical efficacy with favorable tolerability in pLGG. Vemurafenib achieves high response rates and induces early tumor shrinkage in patients with BRAF V600E mutations, supporting its utility as a first-line therapy.
Humans
;
Glioma/genetics*
;
Male
;
Female
;
Child
;
Child, Preschool
;
Retrospective Studies
;
Brain Neoplasms/genetics*
;
Molecular Targeted Therapy/adverse effects*
;
Adolescent
;
Infant
;
Proto-Oncogene Proteins B-raf/genetics*
;
Pyrimidinones/therapeutic use*
;
Mutation
3.Influence of curative-intent resection with textbook outcomes on long-term prognosis of gall-bladder carcinoma: a national multicenter study
Zhipeng LIU ; Zimu LI ; Yule LUO ; Xiaolin ZHAO ; Jie BAI ; Yan JIANG ; Yunfeng LI ; Chao YU ; Fan HUANG ; Zhaoping WU ; Jinxue ZHOU ; Dalong YIN ; Rui DING ; Wei GUO ; Yi ZHU ; Wei CHEN ; Kecan LIN ; Ping YUE ; Yao CHENG ; Haisu DAI ; Dong ZHANG ; Zhiyu CHEN
Chinese Journal of Digestive Surgery 2024;23(7):926-933
Objective:To investigate the influence of curative-intent resection with textbook outcomes of liver surgery (TOLS) on long-term prognosis of gallbladder carcinoma (GBC).Methods:The retrospective cohort study was conducted. The clinicopathological data of 824 patients with GBC in the national multicenter database of Biliary Surgery Group of Elite Group of Chinese Journal of Digestive Surgery, who were admitted to 15 medical centers from January 2014 to January 2021, were collected. There were 285 males and 539 females, aged (62±11)years. According to the evalua-tion criteria of TOLS, patients were divided into those who achieved TOLS and those who did not achieve TOLS. Measurement data with normal distribution were represented as Mean± SD, and com-parison between groups was conducted using the independent sample t test. Measurement data with skewed distribution were represented as M( Q1, Q3), and comparison between groups was conducted using the Mann-Whitney U test. Count data were described as absolute numbers, and comparison between groups was conducted using the chi-square test. Comparison of ordinal data were conduc-ted using the Mann-Whitney U test. The Kaplan-Meier method was used to calculate survival rate and draw survival curve, and the Log-rank test was used for survival analysis. The COX stepwise regression model with backward Wald method was used for univariate and multivariate analyses. Results:(1) Achievement of TOLS. Of the 824 patients undergoing curative-intent resection for GBC, there were 510 cases achieving TOLS and 314 cases not achieving TOLS. (2) Follow-up. Of the 824 patients undergoing curative-intent resection for GBC, after excluding 112 deaths within 90 days after discharge, 712 cases were included for the survival analysis. The median follow-up time, median overall survival time and 5-year overall survival rate of the 510 patients achieving TOLS were 22.1(11.4,30.1)months, 47.6(30.6,64.6)months and 47.5%. The median follow-up time, median overall survival time and 5-year overall survival rate of the 202 patients not achieving TOLS were 14.0(6.8,25.5)months, 24.3(20.0,28.6)months and 21.0%. There was a significant difference in overall survival between patients achieving TOLS and patients not achieving TOLS ( χ2=58.491, P<0.05). (3) Analysis of factors influencing prognosis of patients. Results of multivariate analysis showed that TOLS, carcinoembryonic antigen (CEA), CA19-9, poorly differentiation of tumor, T2 stage of eighth edition of American Joint Committee on Cancer (AJCC) staging, T3 and T4 stage of eighth edition of AJCC staging, N1 stage of the eighth edition of AJCC staging, N2 stage of the eighth edition of AJCC staging, adjuvant therapy were independent factors influencing overall survival time of patients undergoing curative-intent resection for GBC ( hazard ratio=0.452, 1.479, 1.373, 1.612, 1.455, 1.481, 1.835, 1.978, 0.538, 95% c onfidence interval as 0.352-0.581, 1.141-1.964, 1.052-1.791, 1.259-2.063, 1.102-1.920, 1.022-2.147, 1.380-2.441, 1.342-2.915, 0.382-0.758, P<0.05). Conclusion:Patients under-going curative-intent resection for GBC with TOLS can achieve better long-term prognosis.
4.The efficacy and safety of protein A immunoadsorption combined with rituximab treatment for highly sensitized patients undergoing haplo-hematopoietic stem cell transplantation
Ling LI ; Wenjuan ZHU ; Qian ZHU ; Shiyuan ZHOU ; Chao MA ; Jun WANG ; Xiaohui HU ; Yue HAN ; Ying WANG ; Xiaowen TANG ; Xiao MA ; Suning CHEN ; Huiying QIU ; Luyao CHEN ; Jun HE ; Depei WU ; Xiaojin WU
Chinese Journal of Hematology 2024;45(5):468-474
Objective:To investigate the efficacy and safety of protein A immunoadsorption (PAIA) combined with rituximab (RTX) in highly sensitized patients who underwent haplo-hematopoietic stem cell transplantation (haplo-HSCT) .Methods:The clinical data of 56 highly sensitized patients treated with PAIA and RTX before haplo-HSCT at the First Affiliated Hospital of Soochow University and Soochow Hopes Hematonosis Hospital between March 2021 and June 2023 were retrospectively analyzed. The number of human leukocyte antigen (HLA) antibody types and the mean fluorescence intensity (MFI), humoral immunity, adverse reactions during adsorption, and survival within 100 days before and after adsorption were measured.Results:After receiving the PAIA treatment, the median MFI of patients containing only HLA Ⅰ antibodies decreased from 7 859 (3 209-12 444) to 3 719 (0-8 275) ( P<0.001), and the median MFI of HLA Ⅰ+Ⅱ antibodies decreased from 5 476 (1 977-12 382) to 3 714 (0-11 074) ( P=0.035). The median MFI of patients with positive anti-donor-specific antibodies decreased from 8 779 (2 697-18 659) to 4 524 (0–15 989) ( P<0.001). The number of HLA-A, B, C, DR, and DQ antibodies in all patients decreased after the PAIA treatment, and the differences were statistically significant (A, B, C, DR: P<0.001, DQ: P<0.01). The humoral immune monitoring before and after the PAIA treatment showed a significant decrease in the number of IgG and complement C3 ( P<0.001 and P=0.002, respectively). Forty-four patients underwent HLA antibody monitoring after transplantation, and the overall MFI and number of antibody types decreased. However, five patients developed new antibodies with low MFI, and nine patients continued to have high MFI. The overall survival, disease-free survival, non-recurrent mortality, and cumulative recurrence rates at 100 days post-transplantation were 83.8%, 80.2%, 16.1%, and 4.5%, respectively. Conclusions:The combination of PAIA and RTX has a certain therapeutic effect and good safety in the desensitization treatment of highly sensitive patients before haplo-HSCT.
5.Risk factors and survival of EBV-infected aplastic anemia patients after haploid allogeneic hematopoietic stem cell transplantation
Xin-He ZHANG ; Jia FENG ; Zheng-Wei TAN ; Yue-Chao ZHAO ; Hui-Jin HU ; Jun-Fa CHEN ; Li-Qiang WU ; Qing-Hong YU ; Di-Jiong WU ; Bao-Dong YE ; Wen-Bin LIU
Chinese Journal of Infection Control 2024;23(10):1228-1235
Objective To analyze the risk factors and survival status of Epstein-Barr virus(EBV)infection in pa-tients with aplastic anemia(AA)after haploid allogeneic hematopoietic stem cell transplantation(Haplo-HSCT).Methods Clinical data of 78 AA patients who underwent Haplo-HSCT in the hematology department of a hospital from January 1,2019 to October 31,2022 were analyzed retrospectively.The occurrence and onset time of EBV viremia,EBV-related diseases(EBV diseases),and post-transplant lymphoproliferative disorders(PTLD)were ob-served,risk factors and survival status were analyzed.Results Among the 78 patients,38 were males and 40 were females,with a median age of 33(9-56)years old;53 patients experienced EBV reactivation,with a total inci-dence of 67.9%,and the median time for EBV reactivation was 33(13,416)days after transplantation.Among pa-tients with EBV reactivation,49 cases(62.8%)were simple EBV viremia,2 cases(2.6%)were possible EBV di-seases,and 2 cases(2.6%)were already confirmed EBV diseases(PTLD).Univariate analysis showed that age 1<40 years old at the time of transplantation,umbilical cord blood infusion,occurrence of acute graft-versus-host disease(aGVHD)after transplantation,and concurrent cytomegalovirus(CMV)infection were independent risk fac-tors for EBV reactivation in AA patients after Haplo-HSCT.Multivariate analysis showed that concurrent CMV in-fection was an independent risk factor for EBV reactivation in A A patients after Haplo-HSCT(P=0.048).Ritu-ximab intervention before stem cell reinfusion was a factor affecting the duration of EBV reactivation(P<0.05).The mortality of EBV viremia,EBV diseases,and PTLD alone were 8.2%,50.0%,and 100%,respectively.The 2-year overall survival rate of patients with and without EBV reactivation were 85.3%,and 90.7%,respectively,difference was not statistically significant(P=0.897).However,patients treated with rituximab had 2-year lower survival rate than those who did not use it,with a statistically significant difference(P=0.046).Conclusion EBV reactivation is one of the serious complications in AA patients after Haplo-HSCT,which affects the prognosis and survival of patients.
6.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
7.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
8.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
9.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
10.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.

Result Analysis
Print
Save
E-mail