1.Medical application of video-based intelligent action recognition
Xinrui HUANG ; Hesong HUANG ; Yuchuan HUANG ; Meining CHEN ; Xinyue FAN ; Ming YI
Chinese Journal of Medical Physics 2024;41(1):1-7
Video-based intelligent action recognition remains challenging in the field of computer vision.The review analyzes the state-of-the-art methods of video-based intelligent action recognition,including machine learning methods with handcrafted features,deep learning methods with automatically extracted features,and multi-information fusion methods.In addition,the important medical applications and limitations of these technologies in the past decade are introduced,and the interdisciplinary views on the future application to improve human health are also shared.
2.Preparation and properties of paclitaxel-loaded self-assembling nano-micelles of cholesterol-bearing γ-Polyglutamic acid.
Fan HU ; Gang XIAO ; Yuchuan WANG ; Jun YAO ; Xin CAO
Journal of Biomedical Engineering 2018;35(3):403-408
Paclitaxel (PTX)-loaded self-assembling nano-micelles (PTX/NMs) were prepared based on amphiphilic cholesterol-bearing γ-polyglutamic acid (γ-PGA-graft-CH). The properties of PTX/NMs and were investigated. The results indicated that PTX could be entrapped in -PGA-graft-CH NMs. PTX/NMs was characterized with a size of (343.5 ± 7.3) nm, drug loading content of 26.9% ± 0.8% and entrapment efficiency of 88.6% ± 1.7% at the optimized drug/carrier ratio of 1/10, and showed a pH-sensitive sustainable drug-release and less cytotoxicity . release and the pharmacokinetics study in mice showed that the elimination half-life ( ) and area under curve (AUC) of PTX/NMs were significantly higher than those of PTX/polyoxyethylene castor oil (PTX/PCO), and less clearance (CL) of PTX/NMs was also observed. PTX/NMs were distributed higher in liver and tumor than PTX/PCO, and showed a good tumor-inhibiting activity in tumor-bearing mice. This study would lay a foundation on the potential application of -PGA-graft-CH NMs were the antitumor drug-delivery.
3.Effect of transfusion convalescent recovery plasma in patients with coronavirus disease 2019.
Kun XIAO ; Yang LIN ; Zhifang FAN ; Yuchuan WEN ; Huiqing HUANG ; Min WANG ; Dequan REN ; Chenggao WU ; Wei LIU ; Zhanglin ZHANG ; Guoliang LI ; Aiping LE
Journal of Central South University(Medical Sciences) 2020;45(5):565-570
OBJECTIVES:
To evaluate curative effects of coronavirus disease 2019 (COVID-19) patients by the transfusion of other convalescent plasma.
METHODS:
Retrospective analysis of the clinical data of 18 patients with severe and critical COVID-19, who were hospitalized in the ICU of Xianghu Branch of the First Affiliated Hospital of Nanchang University from February 1 to March 15, 2020. Patients were subdivided into an experimental group (=6, who had transfused the plasma) and an observation group (=12, who had no plasma transfusion). Basic clinical data and prognosis indexes of these two groups were compared. Moreover, for the experimental group, the dynamic changes of blood oxygen saturation before and after the transfusion, the changes of lymphocyte absolute value 48 hours after the transfusion, and the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid were analyzed.
RESULTS:
There were no significant differences in age, gender, blood type and other basic clinical data between the two groups (all >0.05).There were no significant differences in ventilator machine weaning time, extracorporeal membrane oxygenation (ECMO) weaning time, body temperature recovery to normal time, and hospitalization days between these two groups (all >0.05). For the experimental group, before, during and after the convalescent plasma transfusion, the blood oxygen saturation of all 6 patients at all time (1, 6, 8, 12, 24, 36, and 48 h) was more than 90%, and there was no significant fluctuation. There were 3 patients whose absolute value of lymphocyte was increased 48 hours after the transfusion, and the remaining was decreased. There were 5 patients whose SARS-CoV-2 nucleic acid detection turned negative 48 hours after the transfusion, accounting for 83.3%.
CONCLUSIONS
Transfusion of convalescent plasma will not affect outcomesof COVID-19 patients, which can neutralize SARS-CoV-2 in patients and reduce the loading capacity of SARS-CoV-2.
Betacoronavirus
;
Blood Component Transfusion
;
China
;
Coronavirus Infections
;
therapy
;
Humans
;
Immunization, Passive
;
Pandemics
;
Plasma
;
Pneumonia, Viral
;
therapy
;
Retrospective Studies
4.Antitumor synergism between PAK4 silencing and immunogenic phototherapy of engineered extracellular vesicles.
Mei LU ; Haonan XING ; Wanxuan SHAO ; Pengfei WU ; Yuchuan FAN ; Huining HE ; Stefan BARTH ; Aiping ZHENG ; Xing-Jie LIANG ; Yuanyu HUANG
Acta Pharmaceutica Sinica B 2023;13(9):3945-3955
Immunotherapy has revolutionized the landscape of cancer treatment. However, single immunotherapy only works well in a small subset of patients. Combined immunotherapy with antitumor synergism holds considerable potential to boost the therapeutic outcome. Nevertheless, the synergistic, additive or antagonistic antitumor effects of combined immunotherapies have been rarely explored. Herein, we established a novel combined cancer treatment modality by synergizing p21-activated kinase 4 (PAK4) silencing with immunogenic phototherapy in engineered extracellular vesicles (EVs) that were fabricated by coating M1 macrophage-derived EVs on the surface of the nano-complex cores assembled with siRNA against PAK4 and a photoactivatable polyethyleneimine. The engineered EVs induced potent PAK4 silencing and robust immunogenic phototherapy, thus contributing to effective antitumor effects in vitro and in vivo. Moreover, the antitumor synergism of the combined treatment was quantitatively determined by the CompuSyn method. The combination index (CI) and isobologram results confirmed that there was an antitumor synergism for the combined treatment. Furthermore, the dose reduction index (DRI) showed favorable dose reduction, revealing lower toxicity and higher biocompatibility of the engineered EVs. Collectively, the study presents a synergistically potentiated cancer treatment modality by combining PAK4 silencing with immunogenic phototherapy in engineered EVs, which is promising for boosting the therapeutic outcome of cancer immunotherapy.