1.Color Space Method Combined with Chemometrics to Determine Processing Degree of Angelicae Sinensis Radix Carbonisata
Liuying QIN ; Yao HUANG ; Lifan GAN ; Yuanjun LIU ; Congyou DENG ; Dongmei SUN ; Lijin LIANG ; Lin ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):201-210
ObjectiveTo study the changing law of appearance color and physicochemical properties of Angelicae Sinensis Radix Carbonisata(ASRC) during the processing by color space method combined with statistical analysis, so as to provide reference for determining the processing endpoint and evaluating the quality of the decoction pieces. MethodsTaking processing time(4, 8, 12, 16 min) and temperature(180, 200, 220, 240 ℃) as factors, ASRC decoction pieces with different processing degrees were prepared in a completely randomized design. Then, the brightness value(L*), red-green value(a*), yellow-blue value(b*), and total chromaticity value (E*ab) of the decoction pieces were determined by spectrophotometer, the color difference value(ΔE) was calculated, and the data of colorimetric values were analyzed by discriminant analysis. At the same time, the pH, charcoal adsorption, and contents of tannins, 5-hydroxymethylfurfural(5-HMF), tryptophan, chlorogenic acid, ferulic acid, senkyunolide I, senkyunolide H and ligustilide of ASRC with different processing degrees were determined by pH meter, ultraviolet and visible spectrophotometry and ultra-high performance liquid chromatography(UPLC). Principal component analysis(PCA) was used to analyze the data of physicochemical indexes, after determining the processing technology of ASRC, the canonical discriminant function was established to distinguish the decoction pieces with different processing degrees, and leave-one-out cross validation was conducted. Finally, Pearson correlation analysis was used to explore the correlation between various physicochemical indexes and chromaticity values. ResultsWith the prolongation of the processing time, L*, a*, b* and E*ab all showed a decreasing trend, and the established discriminant model based on color parameters was able to distinguish ASRC with different processing degrees. The pH showed an increasing trend with the prolongation of processing time, and the charcoal adsorption, and the contents of tannins, 5-HMF, and tryptophan all showed an increasing and then decreasing trend. Among them, the charcoal adsorption, contents of tannin and 5-HMF reached their maximum values successively after processing for 8-12 min. While the contents of chlorogenic acid, ferulic acid, senkyunolide I, senkyunolide H and ligustilide decreased with the increase of processing time, with a decrease of 60%-80% at 8 min of processing. Therefore, the optimal processing time should be determined to be 8-12 min. PCA could clearly distinguish ASRC with different processing degrees, while temperature had no significant effect on the processing degree. The 12 batches of process validation results(10 min, 180-240 ℃) showed that except for 3 batches identified as class Ⅱ light charcoal, all other batches were identified as class Ⅲ standard charcoal, and the chromaticity values of each batch of ASRC were within the reference range of class Ⅱ-Ⅲ sample chromaticity values. The correlation analysis showed that the chromaticity values were negatively correlated with pH and charcoal adsorption, and positively correlated with contents of tryptophan, chlorogenic acid, ferulic acid, senkyunolide I, senkyunolide H, and ligustilide. And both pH and charcoal adsorption were negatively correlated with the contents of the above components, but the charcoal adsorption was positively correlated with the content of 5-HMF. ConclusionThe chromaticity values and the contents of various physicochemical indicators of ASRC undergo significant changes with the prolongation of processing time, and there is a general correlation between chromaticity values and various physicochemical indicators. Based on the changes in color and physicochemical indicators, the optimal processing time for ASRC is determined to be 8-12 min. This study reveals the dynamic changes of the relevant indexes in the processing of ASRC, which can provide a reference for the discrimination of the processing degree and the quantitative study of the processing endpoint.
2.0.05% Cyclosporine A combined with Olopatadine eye drops for the treatment of allergic conjunctivitis-related dry eye disease
Jinfen LI ; Yue LI ; Hui HUANG ; Qianqian LAN ; Zhou ZHOU ; Wenjing HE ; Yuanjun QIN ; Li JIANG ; Fan XU
International Eye Science 2025;25(7):1152-1159
AIM: To explore the efficacy of 0.05% cyclosporine A combined with olopatadine eye drops in treating allergic conjunctivitis-related dry eye disease.METHODS: A total of 63 patients(63 eyes)with allergic conjunctivitis-related dry eye disease in the People's Hospital of Guangxi Zhuang Autonomous Region from August 2022 to April 2023 were enrolled and randomly divided into control group(n=33)and observation group(n=30). The patients of the control group were administrated with 0.1% olopatadine eye drops and 0.3% sodium hyaluronate eye drops, while the observation group was administrated with 0.1% olopatadine eye drops and 0.05% cyclosporine A eye drops. The ocular surface disease index(OSDI), total ocular symptom score(TOSS), conjunctival congestion score, conjunctival papillae and follicle score, Schirmer I test(SⅠt), tear meniscus height(TMH), meibomian gland secretion ability and property score, meibomian gland loss area score, corneal fluorescein staining(CFS), tear film break-up time(BUT), noninvasive first tear film break-up time(NIBUTf), noninvasive average tear film break-up time(NIBUTav)before and after treatment and the drug safety during the treatment period of both groups of patients were evaluated.RESULTS: After treatment, OSDI, TOSS, conjunctival congestion score, conjunctival papillae and follicle score, SⅠt, TMH, meibomian gland secretion ability score and property score, CFS, BUT, NIBUTf, and NIBUTav of the observation group showed improvements compared with those before treatment(all P<0.017). Among these, OSDI, TOSS, conjunctival congestion score, conjunctival papillae and follicle score, BUT, NIBUTf, and NIBUTav demonstrated significant improvement compared with the control group(all P<0.05). There was no statistically significant difference in meibomian gland loss area score between the two groups before and after treatment(P>0.05). During the treatment period, there were no local or systemic adverse reactions.CONCLUSION: The combined use of 0.05% cyclosporine A and olopatadine eye drops can significantly improve ocular discomfort symptoms of patients with dry eye disease associated with allergic conjunctivitis, such as red eyes, itchy eyes and foreign body sensation, promote tear film stability and have high safety.