1.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
2.Research progress on mechanism of traditional Chinese medicine in regulating neutrophil extracellular traps in prevention and treatment of metabolic diseases.
Sai ZHANG ; Ming-Yuan FAN ; Jiu-Shu YUAN ; Qi-Yuan YAO ; Hong-Yan XIE ; Hai-Po YUAN ; Hong GAO
China Journal of Chinese Materia Medica 2025;50(1):78-93
Metabolic diseases have seen a steady increase in incidence in recent years, becoming one of the main causes of sub-health status globally. Neutrophil extracellular traps(NETs) are reticular complexes containing DNA, which trap foreign microorganisms or induce an immune response. Current research indicates that NETs are widely active in various metabolic diseases and can cause severe damage to the body through multiple mechanisms, including promoting blood glucose elevation, damaging vascular endothelial cells, forming vascular embolisms, triggering intense inflammation, and promoting lipid accumulation. Therefore, intervening in NETs is an important approach to treating metabolic diseases. Research has shown a close relationship between the theory of spleen heat-turbid toxin theory and metabolic diseases-NETs mechanism. The basic pathogenesis include the internal accumulation of phlegm-dampness, qi stagnation and blood stasis, internal accumulation of dampness-heat, phlegm and blood stasis, and flourishing toxic heat. Various Chinese herbal medicines with the functions of dispelling dampness, resolving phlegm, promoting blood circulation to remove blood stasis, and clearing heat and toxins, along with their extracts and compound prescriptions, can treat metabolic diseases by regulating NETs and delaying disease progression. This paper systematically outlined the formation mechanisms of NETs, their connection to metabolic diseases, the theoretical basis in TCM, their roles in numerous metabolic diseases, and the current research status of TCM in regulating NETs to prevent and control metabolic diseases, aiming to provide effective reference ideas for developing therapeutic strategies for metabolic diseases.
Humans
;
Extracellular Traps/metabolism*
;
Metabolic Diseases/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Animals
;
Neutrophils/metabolism*
;
Medicine, Chinese Traditional
3.A new tetralone glycoside in leaves of Cyclocarya paliurus.
Ting-Si GUO ; Qin HUANG ; Qi-Qi HU ; Fei-Bing HUANG ; Qing-Ling XIE ; Han-Wen YUAN ; Wei WANG ; Yu-Qing JIAN
China Journal of Chinese Materia Medica 2025;50(1):146-167
The chemical constituents from leaves of Cyclocarya paliurus were isolated and purified by chromatography on silica gel, C_(18) reverse-phase silica gel, and Sephadex LH-20 gel, as well as semi-preparative high-performance liquid chromatography. Six compounds were identified by UV, IR, NMR, MS, calculated ECD, and comparison with literature data as cyclopaloside D(1), boscialin(2),(5R,6S)-6-hydroxy-6-[(E)-3-hydroxybut-1-enyl]-1,1,5-trimethylcyclohexanone(3), 3S,5R-dihydroxy-6R,7-megastigmadien-9-one(4), 3S,5R-dihydroxy-6S,7-megastigmadien-9-one(5), and gingerglycolipid A(6), respectively. Among them, compound 1 was identified as a new tetralone glycoside, and compounds 2-6 were isolated from leaves of C. paliurus for the first time. Furthermore, compound 1 exhibited strong antioxidant activity, with the IC_(50) of(454.20±31.81)μmol·L~(-1) and(881.82±42.31)μmol·L~(-1) in scavenging DPPH and ABTS free radicals, respectively.
Plant Leaves/chemistry*
;
Glycosides/isolation & purification*
;
Juglandaceae/chemistry*
;
Tetralones/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
4.Effect and mechanism of Moringa oleifera leaves, seeds, and velamen in improving learning and memory impairments in mice based on transcriptomic and metabolomic.
Zhi-Hao WANG ; Shu-Yi FENG ; Tao LI ; Wan-Ping ZHOU ; Jin-Yu WANG ; Yang LIU ; Lin ZHANG ; Yuan-Yuan XIE ; Xiu-Lan HUANG ; Zhi-Yong LI ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(13):3793-3812
Moringa oleifera, widely utilized in Ayurvedic medicine, is recognized for its leaves, seeds, and velamen possessing traditional effects such as vātahara(wind alleviation), sirovirecaka(brain clearing), and hridya(mental nourishment). This study aims to identify the medicinal part of ■ in the Sārasvata ghee formulation as described in the Bower Manuscript, while investigating the ameliorative effects of different medicinal parts of M. oleifera on learning and memory deficits in mice and elucidating the underlying molecular mechanisms. A total of 144 male ICR mice were randomly assigned to the following groups: control, model(scopolamine hydrobromide, Sco, 2 mg·kg~(-1)), donepezil(donepezil hydrochloride, Don, 3 mg·kg~(-1)), M. oleifera leaf low-, medium-, and high-dose groups(0.5, 1, 2 g·kg~(-1)), M. oleifera seeds low-, medium-, and high-dose groups(0.25, 0.5, 1 g·kg~(-1)), and M. oleifera velamen low-, medium-, and high-dose groups(0.31, 0.62, 1.24 g·kg~(-1)). Learning and memory abilities were assessed using the passive avoidance test and Morris water maze. Nissl and HE staining were employed to examine histopathological changes in the hippocampus. Transcriptomics and targeted metabolomics were used to screen differential genes and metabolites, with MetaboAnalyst 6.0 and O2PLS methods applied to identify key disease-related targets and pathways. RESULTS:: demonstrated that M. oleifera leaf(1 g·kg~(-1)) significantly ameliorated Sco-induced learning and memory deficits, outperforming M. oleifera seeds(0.25 g·kg~(-1)) and M. oleifera velamen(1.24 g·kg~(-1)). This was evidenced by improved behavioral performance, reversal of neuronal damage, and reduced acetylcholinesterase(AChE) activity. Multi-omics analysis revealed that M. oleifera leaf upregulated Tuba1c gene expression through the synaptic vesicle cycle, enhancing glutamate(Glu), dopamine(DA), and acetylcholine(ACh) release via Tuba1c-Glu associations for neuroprotection. M. oleifera seeds targeted the dopaminergic synapse pathway, promoting memory consolidation through Drd2-ACh associations. M. oleifera velamen was associated with the cocaine addiction pathway, modulating dopamine metabolism via Adora2a-DOPAC, with limited relevance to learning and memory. In conclusion, M. oleifera leaf exhibits superior efficacy and mechanistic advantages over M. oleifera seeds and velamen, suggesting that the ■ in the Sārasvata ghee formulation is likely M. oleifera leaf, providing scientific evidence for its identification in ancient texts.
Animals
;
Moringa oleifera/chemistry*
;
Male
;
Mice
;
Seeds/chemistry*
;
Plant Leaves/chemistry*
;
Mice, Inbred ICR
;
Memory Disorders/psychology*
;
Transcriptome/drug effects*
;
Memory/drug effects*
;
Learning/drug effects*
;
Metabolomics
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Maze Learning/drug effects*
5.Pulmonary surfactant-biomimetic membranized coacervate injection for acute respiratory distress syndrome therapy.
Wei CHEN ; Qi XIE ; Zhanhao ZHOU ; Jia KANG ; Yuan GAO ; Haoyu ZHANG ; Samira BATUR ; Chuansheng FU ; Yunyun LI ; Conglian YANG ; Li KONG ; Zhiping ZHANG
Acta Pharmaceutica Sinica B 2025;15(11):5945-5965
Acute respiratory distress syndrome (ARDS) is the leading cause of respiratory failure with high morbidity and mortality. Pulmonary surfactant (PS)-based complementary therapies have exhibited potential for ARDS healing and applied as an adjunctive therapy strategy. Coacervate (Coac) has the characteristics of softness, deformability and excellent molecular enrichment properties, and has attracted extensive attention in the biomedical field. Here PS and coacervate were combined for the potential ARDS treatment. The Coac, fabricated from polyallylamine hydrochloride (PAH) and adenosine triphosphate (ATP) by simple mixing, exhibited soft droplet property and high enrichment for dexamethasone sodium phosphate (DSP). To avoid the fusion effect of membraneless coacervate and endow it with biological functions of PS, liposomes with PS-biomimetic lipid components (PS-lipo) were further introduced to construct PS-biomimetic membranized coacervate (DSP@PS-Coac). The DSP@PS-Coac demonstrated high lung targeting effect and significant penetration efficiency after intravenous injection. Furthermore, PS-lipo replenished the endogenous PS pool and facilitated the distribution of DSP in inflammatory cells in the lung. In the ARDS mouse model, PS-Coac and DSP exerted synergetic anti-inflammatory functions, via reducing the recruitment of inflammatory neutrophils and modulating macrophages into anti-inflammatory phenotype. The overall results confirmed that DSP@PS-Coac may provide a promising delivery option for the treatment of ARDS.
6.Association of urinary volatile organic compound metabolites with kidney functions and associated exposure risk factors
Qi XIE ; Jingyi YUAN ; Zhiping NIU ; Yuanzhuo HU ; Yiwei LIU ; Jiufeng LI ; Zhuohui ZHAO
Journal of Environmental and Occupational Medicine 2025;42(11):1281-1288
Background Exposure to volatile organic compounds (VOCs) has been observed in both living and working environments. Volatile organic compounds metabolites (VOCMs) in urine can be used to assess the exposure to VOCs and potentially cause adverse effects on human body. Objective To quantitatively evaluate urinary VOCMs and their associations with renal function damage, and further trace the characteristics of potential environmental exposure to provide scientific evidence for effective prevention measures. Methods The study included a total of
7.Damage mechanism of diacetylmorphine on BV-2 cells
Mingren XIE ; Shan QI ; Lei YU ; Xia YUAN ; Jing DU ; Farong YU
Chinese Journal of Forensic Medicine 2024;39(3):304-307,314
Objective To study the damage mechanism of diacetylmorphine(DAM)on BV-2cells.Methods BV-2 cells with the ability to divide and proliferate were selected as experimental objects,BV-2 cells were treated with 30,60 and 120 mg/L DAM,respectively.The cells were cu?tured for 4,8,16,32 and 48 h.The damage degree and proliferation inhibition rate of BV-2 cells were detected by trypan blue and thiazole blue(MTT)method.The effects of DAM on BV-2 cell cycle and apoptosis were detected with flow cytometry.The c-Fos,Bax,caspase-9,BDNF,HSP-70 and TrkB protein level in BV-2 cells were detected by ELISA.Results Trypan blue and MTT detection showed that the death cells increased significantly with the increase of DAM concentration and prolonged action time and the inhibition rate of BV-2 cells was significantly higher than that of the control group.Cell cycle showed that the number of G0/G1 phase cells in DAM group was significantly increased,the number of G2 phase cells was significantly decreased,and the apoptosis rate was increased.ELISA showed that the protein levels of caspase-9,c-Fos and Bax in DAM groups were significantly higher than those in the control group.On the contrary,BDNF,HSP-70 and TrkB protein levels were significantly lower than those in the control group.Conclusion The damage mechanism of DAM on BV-2 cells is related to up-regulating damage protein level,down-regulating protection protein level,damaging cell membrane structure,inhibiting cell division,leading to cell apoptosis and death.
8.Research progress in regulatory mechanism and traditional Chinese medicine intervention of circular RNA for coronary atherosclerotic heart disease
Lan-Tian HU ; Xue-Na XIE ; Yu-Ying WANG ; Mei LIU ; Hong-Ai GUO ; Rong YUAN ; Qi-Qi XIN ; Yu MIAO ; Wei-Hong CONG
Chinese Pharmacological Bulletin 2024;40(11):2014-2019
Coronary atherosclerotic heart disease(CHD)is an ischemic cardiovascular condition caused by the narrowing or blockage of the vascular lumen due to coronary atherosclerosis.Clinically,it presents as angina pectoris,heart failure,or sud-den cardiac death,and stands as one of the primary causes of mortality among both urban and rural populations in China.Cir-cRNA,classified as non-coding RNAs,can function as upstream regulatory molecules for miRNA or RNA-binding proteins.They actively participate in various pathological processes associated with CHD,including endothelial cell dysfunction,smooth mus-cle cell migration,macrophage-derived foam cell formation,an-giogenesis,myocardial injury,and repair,as well as post-in-farction heart failure.The expression pattern of these molecules is highly specific to the illness and tissue,indicating their poten-tial as therapeutic targets for disease management and as biomar-kers.Furthermore,they also open up new avenues for drug tar-get development in the field of traditional Chinese medicine.This article aims to provide an overview of the recent research progress on circRNA in the regulation of coronary heart disease,as well as the mechanisms involved in traditional Chinese medi-cine.It serves as a valuable reference for future research on cor-onary heart disease.
9.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
10.Leukocyte cell-derived chemotaxin 2(LECT2)regulates liver ischemia-reperfusion injury
Dong MENG-QI ; Xie YUAN ; Tang ZHI-LIANG ; Zhao XUE-WEN ; Lin FU-ZHEN ; Zhang GUANG-YU ; Huang ZHI-HAO ; Liu ZHI-MIN ; Lin YUAN ; Liu FENG-YONG ; Zhou WEI-JIE
Liver Research 2024;8(3):165-171
Background and aim:Hepatic ischemia-reperfusion injury(IRI)is a significant challenge in liver trans-plantation,trauma,hypovolemic shock,and hepatectomy,with limited effective interventions available.This study aimed to investigate the role of leukocyte cell-derived chemotaxin 2(LECT2)in hepatic IRI and assess the therapeutic potential of Lect2-short hairpin RNA(shRNA)delivered through adeno-associated virus(AAV)vectors. Materials and methods:This study analyzed human liver and serum samples from five patients under-going the Pringle maneuver.Lect2-knockout and C57BL/6J mice were used.Hepatic IRI was induced by clamping the hepatic pedicle.Treatments included recombinant human LECT2(rLECT2)and AAV-Lect2-shRNA.LECT2 expression levels and serum biomarkers including alanine aminotransferase(ALT),aspartate aminotransferase(AST),creatinine,and blood urea nitrogen(BUN)were measured.Histological analysis of liver necrosis and quantitative reverse-transcription polymerase chain reaction were performed. Results:Serum and liver LECT2 levels were elevated during hepatic IRI.Serum LECT2 protein and mRNA levels increased post reperfusion.Lect2-knockout mice had reduced weight loss;hepatic necrosis;and serum ALT,AST,creatinine,and BUN levels.rLECT2 treatment exacerbated weight loss,hepatic necrosis,and serum biomarkers(ALT,AST,creatinine,and BUN).AAV-Lect2-shRNA treatment significantly reduced weight loss,hepatic necrosis,and serum biomarkers(ALT,AST,creatinine,and BUN),indicating thera-peutic potential. Conclusions:Elevated LECT2 levels during hepatic IRI increased liver damage.Genetic knockout or shRNA-mediated knockdown of Lect2 reduced liver damage,indicating its therapeutic potential.AAV-mediated Lect2-shRNA delivery mitigated hepatic IRI,offering a potential new treatment strategy to enhance clinical outcomes for patients undergoing liver-related surgeries or trauma.

Result Analysis
Print
Save
E-mail