1.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
2.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
3.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
4.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
5.Design, synthesis, and antitumor activity of novel thioheterocyclic nucleoside derivatives by suppressing the c-MYC pathway.
Xian-Jia LI ; Ke-Xin HUANG ; Ke-Xin WANG ; Ru LIU ; Dong-Chao WANG ; Yu-Ru LIANG ; Er-Jun HAO ; Yang WANG ; Hai-Ming GUO
Acta Pharmaceutica Sinica B 2025;15(7):3685-3707
Eightly-four novel thioheterocyclic nucleoside derivatives were designed, synthesized, and evaluated for antitumor activity in vitro and in vivo. Most of the compounds inhibited the growth of HCT116 and HeLa cancer cells in vitro, among them 33a and 36b exhibited potent activity against HCT116 cells (IC50 = 0.27 and 0.49 μmol/L, respectively). Both compounds 33a and 36b inhibited cell metastasis, arrested the cell cycle in the G2/M phase, and induced apoptosis in vitro. Mechanistic studies revealed that 33a and 36b increased ROS levels, led to DNA damage, ER stress, and mitochondrial dysfunction, and inhibited autophagy in HCT116 cells. Biological information analysis, RNA-sequencing, Gene Set Enrichment Analysis (GSEA), drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and SPR experiments identified that compounds 33a and 36b showed antitumor activity by suppressing the c-MYC pathway. c-MYC silencing assays indicated that c-MYC proteins participated in 33a-mediated anticancer activities in HCT116 cells. More importantly, compound 33a presented favorable pharmacokinetic properties in mice (T 1/2 = 6.8 h) and showed significant antitumor efficacy in vivo without obvious toxicity, showing promising potential for further clinical development.
6.Development and application of a method for identifying Pheretima and a common counterfeit of Metaphire magna based on signature peptides
Rui LIU ; Jing-xian ZHANG ; Qing HU ; Jian SUN ; Hong YU ; Ying-ying RAN ; Fan HUANG ; Xiu-hong MAO ; Shen JI
Acta Pharmaceutica Sinica 2024;59(10):2842-2848
Based on the species-specific peptides of
7.Multisystem inflammatory syndrome in children in the context of coronavirus disease 2019 pandemic
Bin ZHOU ; Yu-Kun HUANG ; Shao-Xian HONG ; Fu-Yong JIAO ; Kai-Sheng XIE
Chinese Journal of Contemporary Pediatrics 2024;26(1):98-102
Multisystem inflammatory syndrome in children(MIS-C)is a complex syndrome characterized by multi-organ involvement that has emerged in the context of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)outbreak.The clinical presentation of MIS-C is similar to Kawasaki disease but predominantly presents with fever and gastrointestinal symptoms,and severe cases can involve toxic shock and cardiac dysfunction.Epidemiological findings indicate that the majority of MIS-C patients test positive for SARS-CoV-2 antibodies.The pathogenesis and pathophysiology of MIS-C remain unclear,though immune dysregulation following SARS-CoV-2 infection is considered a major contributing factor.Current treatment approaches for MIS-C primarily involve intravenous immunoglobulin therapy and symptomatic supportive care.This review article provides a comprehensive overview of the definition,epidemiology,pathogenesis,clinical presentation,diagnosis,treatment,and prognosis of MIS-C.
8.Blood security and management of transfusion-dependent thalassaemia(TDT)patients in Nanning:analysis of"col-lection-based-supply"blood management mode
Mei YU ; Yang CHEN ; Xian LI ; Qiuhong MO ; Linbin HUANG ; Xipeng YAN ; Baoren HE ; Bin LI ; Limin CHEN
Chinese Journal of Blood Transfusion 2024;37(5):567-574
Objective To retrospectively analyze the blood use of transfusion-dependent thalassemia(TDT)patients in 9 designated transfusion medical institutions from 2018 to 2023 in Nanning,and to evaluate the effect of"three designated"blood transfusion mode(hereby means TDT patients undergoing blood transfusion in designated transfusion medical institu-tions regularly)and"collection-based-supply"blood management mode on blood security of TDT patients.Methods The"three designated"blood transfusion mode was implemented to ensure that TDT patients registered in the local household registration(referred to as the"register")obtain the rights and interests of outpatient transfusion and blood security of des-ignated medical institutions.The"collection-based-supply"blood management mode was implemented to assess the blood needs of"register"TDT patients and meet their needs to the maximum extent according to the blood inventory(collection).Results From 2018 to 2023,the total blood supply of"register"TDT patients was 10.37%of the total red blood supply of all medical institutions(138 509.5 U/1 335 788.0 U),with the highest proportion of type O blood as 46.34%(64 181.0 U/138 509.5 U)and the lowest proportion of type AB blood as 3.85%(5 331.0 U/138 509.5 U).In 2018,9 transfusion medical institutions were designated for TDT patients.There were a total of 766 TDT patients in the register,with the per ca-pita annual blood transfusion volume increased from20.28 U(15 531.0 U/766 patients)in2018 to36.01 U(27 586.0 U/766 patients)in 2023,maintaining a positive growth every year(30.26%,4.94%,11.71%,8.61%,4.94%and 7.10%).Conclusion The"three designated"blood transfusion mode and the"collection-based-supply"blood management mode can effectively guarantee the blood supply of TDT patients.
9.Exploration on the Medication Rules of HUANG Li in Treating Recurrent Angina Pectoris After Percutaneous Coronary Intervention for Coronary Heart Disease
Shi-Yi TAO ; Xian-Wen TANG ; Lin-Tong YU ; De-Shuang YANG ; Rui-Qi YAO ; Lan-Xin ZHANG ; Jia-Yun WU ; Li HUANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(6):1598-1606
Objective To explore the medication rules of Professor HUANG Li for the treatment of recurrent angina pectoris after percutaneous coronary intervention(PCI)for coronary heart disease by data mining method.Methods The prescriptions for effective cases of recurrent angina pectoris after PCI for coronary heart disease treated by Professor HUANG Li in the outpatient department of China-Japan Friendship Hospital were collected.SPSS Statistics 26.0 software and SPSS Modeler 18.0 software were used for frequency statistics,analysis of the therapeutic actions,properties,flavors and meridian tropism of the prescribed herbs as well as association rule analysis,cluster analysis and factor analysis of the herbs.Results A total of 344 Chinese medicine prescriptions were obtained,involving 209 herbs,with a cumulative frequency of 5 874 times.The top 30 Chinese medicinals were named as the high-frequency Chinese medicines,and the herbs with the frequency over 100 times in descending order were Astragali Radix,Chuanxiong Rhizoma,Puerariae Lobatae Radix,Rhodiolae Crenulatae Radix et Rhizoma,Notoginseng Radix et Rhizoma,Poria,Dalbergiae Odoriferae Lignum,Atractylodis Macrocephalae Rhizoma,Curcumae Rhizoma,Sparganii Rhizoma,Dioscoreae Rhizoma,Citri Reticulatae Pericarpium,Pinelliae Rhizoma Praeparatum,Codonopsis Radix,and Glycyrrhizae Radix et Rhizoma.The high-frequency Chinese medicinals were mostly classified as blood-activating and stasis-resolving drugs and qi-replenishing drugs.The medicinal properties of the drugs were characterized by being warm,mild,or cold,the flavors were predominated by being sweet,pungent or bitter,and the medicinals usually had the meridian tropism of the spleen,lung and liver meridians.A total of 30 association rules were mined out,cluster analysis yielded 5 herbal groups,and factor analysis yielded 11 groups of common factors.Conclusion For the treatment of cardiovascular diseases,Professor HUANG Li follows the theory of qi,blood and water,and especially pays more attention to the ascending and descending of qi movement.For qi deficiency and blood stasis contribute to the basic pathogenesis of recurrent angina pectoris after PCI,the therapy of benefiting qi,activating blood and removing stasis is recommended.Moreover,the simultaneous regulation of five zang-organs and simultaneous use of the cold and warm herbs are performed,and the herbs of benefiting qi and invigorating spleen,resolving phlegm and inducing diuresis,tranquilizing mind,promoting qi and dissipating masses,and activating blood to eliminate stasis are used for adjuvant therapy.
10.Protective effect of placental mesenchymal stem cells in the treatment of pancreatic trauma in rats
Hong-Fei DONG ; Xi HUANG ; Zhang-Peng WANG ; Guang-Xu JING ; Ming SHI ; Xian-Hui LI ; Hong-Yu SUN
Medical Journal of Chinese People's Liberation Army 2024;49(4):439-448
Objective To investigate the protective effect of placental mesenchymal stem cells(P-MSCs)on pancreatic trauma(PT)in rats.Methods Sixty healthy adult male SD rats were randomly divided into control group,pancreatic trauma group(inject 1 ml of PBS solution locally in the pancreatic injury area and around the trauma area),and P-MSCs group[inject 1 ml of P-MSCs(1×106/ml)locally in the pancreatic injury area and around the trauma area],with 20 rats in each group.The pancreatic trauma rat model was established using a traumatic pressure of 400 kPa.Five rats were sacrificed at 1,3,5,and 7 d after modeling in each group,and serum and pancreatic tissue were collected.HE staining was used to observe the pathological changes of pancreatic tissue and pathological scores were performed.The ELISA method was used to measure the concentrations of serum amylase(AMS),lipase(LPS),tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),IL-10,and transforming growth factor-β1(TGF-β1),as well as the activities of myeloperoxidase(MPO)and superoxide dismutase(SOD)in pancreatic tissue.The TUNEL method was used to observe the level of apoptosis in pancreatic tissue was observed by the TUNEL method.Results Compared with control group,pancreatic trauma group and P-MSCs group showed significant differences after pancreatic trauma,including the generation of peritoneal fluid increased(P<0.05),the ratio of pancreas to body weight and the total score of pancreatic tissue pathological damage increased(P<0.05),and serum levels of AMS,LPS,TNF-α,IL-6,and MPO activity increased early and showed a decreasing trend over time(P<0.05),while anti-inflammatory factors IL-10 and SOD activity showed an increasing trend over time(P<0.01),level of TGF-β1 in the early decline showed an upward trend over time(P<0.01),and the apoptosis index(AI)significantly increased(P<0.001).Compared with pancreatic trauma group,P-MSCs group showed an improvement in the overall morphology of pancreatic tissue,the generation of peritoneal fluid decreased(P<0.001),the pancreas to body weight ratio and the total score of pancreatic tissue pathological damage decreased(P<0.05),and serum levels of AMS,LPS,IL-6,TNF-α and MPO activity returned to normal levels faster(P<0.05);and the rate of anti-inflammatory factors IL-10,TGF-β1 and SOD activity elevation increased(P<0.05),the AI increased(P<0.001).Conclusion P-MSCs can achieve therapeutic effects on pancreatic trauma in rats by promoting pancreatic tissue repair,reducing local and systemic inflammation,improving tissue oxidative stress,and enhancing pancreatic acinar cell apoptosis.

Result Analysis
Print
Save
E-mail