1.Identification and molecular biological mechanism study of subtypes caused by ABO*B.01 allele c. 3G>C mutation
Yu ZHANG ; Jie CAI ; Yating LING ; Lu ZHANG ; Meng LI ; Qiang FU ; Chengtao HE
Chinese Journal of Blood Transfusion 2025;38(2):274-279
[Objective] To study on the genotyping of a sample with inconsistent forward and reverse serological tests, and to conduct a pedigree investigation and molecular biological mechanism study. [Methods] The ABO blood group of the proband and his family members were identified using blood group serological method. The ABO gene exon 1-7 of samples of the proband and his family were sequenced by Sanger and single molecule real-time sequencing (SMRT). DeepTMHMM was used to predict and analyze the transmembrane region of proteins before and after mutation. [Results] The proband and his mother have the Bw phenotype, while his maternal grandfather has ABw phenotype. The blood group results of forward and reverse typing of other family members were consistent. ABO gene sequencing results showed that there was B new mutation of c.3 G>C in exon 1 of ABO gene in the proband, his mother and grandfather, leading to a shift in translation start site. DeepTMHMM analysis indicated that the shift in the translation start site altered the protein topology. [Conclusion] The c.3G>C mutation in the first exon of the ABO gene leads to a shift in the translation start site, altering the protein topology from an α-transmembrane region to a spherical signaling peptide, reducing enzyme activity and resulting in the Bw serological phenotype.
2.Optimal regimen screening of acupuncture and moxibustion for obstructive sleep apnea hypopnea syndrome.
Yuqiang SONG ; Yuanbo FU ; Sanfeng SUN ; Yali WEN ; Yinxia LIU ; Jie SUN ; Xin DU ; Xueting ZHANG ; Linbo SHEN ; Baijie LI ; Han YU ; Qingdai LI
Chinese Acupuncture & Moxibustion 2025;45(2):242-248
OBJECTIVE:
To screen the optimal regimen of acupuncture and moxibustion for obstructive sleep apnea hypopnea syndrome (OSAHS), so as to provide the evidences for clinical decision-making.
METHODS:
From 7 databases in Chinese and English i.e. the Full-Text Database of China Journal Network (CNKI), Wanfang Data Knowledge Service Platform (Wanfang), VIP Information Chinese Journal Service Platform (VIP), Chinese Biomedical Literature Database (SinoMed), PubMed, Web of Science (WOS) and Cochrane Library, randomized controlled trial (RCT) articals of OSAHS treated with acupuncture and moxibustion were searched. The quality of evidence was evaluated with the modified Jadad scale, the evaluation index was established and the optimal regimen of acupuncture and moxibustion for OSAHS was screened by multi-index decision analysis.
RESULTS:
A total of 10 RCTs were included, and the filiform needling therapy was optimal in treatment of OSAHS. The acupoints included Lianquan (CV23), Danzhong (CV17), Zhongwan (CV12), and bilateral Kongzui (LU6), Pishu (BL20), Fenglong (ST40), Zusanli (ST36), Yinlingquan (SP9) and Zhaohai (KI6). Zusanli (ST36) received the reinforcing method, Pishu (BL20) and Fenglong (ST40) were stimulated with the reducing technique, and the rest acupoints with the uniform reinforcing-reducing. Each acupoint was manually manipulated once every 10 min during the needle retention for 30 min. Acupuncture was delivered once a day, 5 times a week and for consecutive 4 weeks. Among the included literature, the severity of disease was not reported in detail, the filiform needling was the dominant intervention, the local acupoints such as Lianquan (CV23) and Panglianquan (Extra) were mainly selected. The apnea-hypopnea index and the minimum oxygen saturation were taken as the evaluation indexes, and the effect was evaluated in reference to the generally accepted standards. The attention to safety evaluation was insufficient, the report on methodology was not adequate and the quality was low.
CONCLUSION
Filiform needling is the dominant therapy of acupuncture and moxibustion for OSAHS, and the local acupoints are considered specially. But the quality of clinical research should be improved.
Humans
;
Moxibustion
;
Acupuncture Therapy
;
Sleep Apnea, Obstructive/therapy*
;
Acupuncture Points
;
Randomized Controlled Trials as Topic
3.Clinical practice guidelines for perioperative multimodality treatment of non-small cell lung cancer.
Wenjie JIAO ; Liang ZHAO ; Jiandong MEI ; Jia ZHONG ; Yongfeng YU ; Nan BI ; Lan ZHANG ; Lvhua WANG ; Xiaolong FU ; Jie WANG ; Shun LU ; Lunxu LIU ; Shugeng GAO
Chinese Medical Journal 2025;138(21):2702-2721
BACKGROUND:
Lung cancer is currently the most prevalent malignancy and the leading cause of cancer deaths worldwide. Although the early stage non-small cell lung cancer (NSCLC) presents a relatively good prognosis, a considerable number of lung cancer cases are still detected and diagnosed at locally advanced or late stages. Surgical treatment combined with perioperative multimodality treatment is the mainstay of treatment for locally advanced NSCLC and has been shown to improve patient survival. Following the standard methods of neoadjuvant therapy, perioperative management, postoperative adjuvant therapy, and other therapeutic strategies are important for improving patients' prognosis and quality of life. However, controversies remain over the perioperative management of NSCLC and presently consensus and standardized guidelines are lacking for addressing critical clinical issues in multimodality treatment.
METHODS:
The working group consisted of 125 multidisciplinary experts from thoracic surgery, medical oncology, radiotherapy, epidemiology, and psychology. This guideline was developed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. The clinical questions were collected and selected based on preliminary open-ended questionnaires and subsequent discussions during the Guideline Working Group meetings. PubMed, Web of Science, Cochrane Library, Scopus, and China National Knowledge Infrastructure (CNKI) were searched for available evidence. The GRADE system was used to evaluate the quality of evidence and grade the strengths of recommendations. Finally, the recommendations were developed through a structured consensus-building process.
RESULTS:
The Guideline Development Group initially collected a total of 62 important clinical questions. After a series of consensus-building conferences, 24 clinical questions were identified and corresponding recommendations were ultimately developed, focusing on neoadjuvant therapy, perioperative management, adjuvant therapy, postoperative psychological rehabilitation, prognosis assement, and follow-up protocols for NSCLC.
CONCLUSIONS
This guideline puts forward reasonable recommendations focusing on neoadjuvant therapy, perioperative management, adjuvant therapy, postoperative psychological rehabilitation, prognosis assessment, and follow-up protocol of NSCLC. It standardizes perioperative multimodality treatment and provides guidance for clinical practice among thoracic surgeons, medical oncologists, and radiotherapists, aiming to reduce postoperative recurrence, improve patient survival, accelerate recovery, and minimize postoperative complications such as atelectasis.
Humans
;
Carcinoma, Non-Small-Cell Lung/therapy*
;
Lung Neoplasms/therapy*
;
Combined Modality Therapy
;
Perioperative Care
4.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
5.Alleviation of hypoxia/reoxygenation injury in HL-1 cells by ginsenoside Rg_1 via regulating mitochondrial fusion based on Notch1 signaling pathway.
Hui-Yu ZHANG ; Xiao-Shan CUI ; Yuan-Yuan CHEN ; Gao-Jie XIN ; Ce CAO ; Zi-Xin LIU ; Shu-Juan XU ; Jia-Ming GAO ; Hao GUO ; Jian-Hua FU
China Journal of Chinese Materia Medica 2025;50(10):2711-2718
This paper explored the specific mechanism of ginsenoside Rg_1 in regulating mitochondrial fusion through the neurogenic gene Notch homologous protein 1(Notch1) pathway to alleviate hypoxia/reoxygenation(H/R) injury in HL-1 cells. The relative viability of HL-1 cells after six hours of hypoxia and two hours of reoxygenation was detected by cell counting kit-8(CCK-8). The lactate dehydrogenase(LDH) activity in the cell supernatant was detected by the lactate substrate method. The content of adenosine triphosphate(ATP) was detected by the luciferin method. Fluorescence probes were used to detect intracellular reactive oxygen species(Cyto-ROS) levels and mitochondrial membrane potential(ΔΨ_m). Mito-Tracker and Actin were co-imaged to detect the number of mitochondria in cells. Fluorescence quantitative polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels of Notch1, mitochondrial fusion protein 2(Mfn2), and mitochondrial fusion protein 1(Mfn1). The results showed that compared with that of the control group, the cell activity of the model group decreased, and the LDH released into the cell culture supernatant increased. The level of Cyto-ROS increased, and the content of ATP decreased. Compared with that of the model group, the cell activity of the ginsenoside Rg_1 group increased, and the LDH released into the cell culture supernatant decreased. The level of Cyto-ROS decreased, and the ATP content increased. Ginsenoside Rg_1 elevated ΔΨ_m and increased mitochondrial quantity in HL-1 cells with H/R injury and had good protection for mitochondria. After H/R injury, the mRNA and protein expression levels of Notch1 and Mfn1 decreased, while the mRNA and protein expression levels of Mfn2 increased. Ginsenoside Rg_1 increased the mRNA and protein levels of Notch1 and Mfn1, and decreased the mRNA and protein levels of Mfn2. Silencing Notch1 inhibited the action of ginsenoside Rg_1, decreased the mRNA and protein levels of Notch1 and Mfn1, and increased the mRNA and protein levels of Mfn2. In summary, ginsenoside Rg_1 regulated mitochondrial fusion through the Notch1 pathway to alleviate H/R injury in HL-1 cells.
Ginsenosides/pharmacology*
;
Receptor, Notch1/genetics*
;
Signal Transduction/drug effects*
;
Mice
;
Animals
;
Mitochondrial Dynamics/drug effects*
;
Mitochondria/metabolism*
;
Cell Line
;
Reactive Oxygen Species/metabolism*
;
Oxygen/metabolism*
;
Cell Hypoxia/drug effects*
;
Cell Survival/drug effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Humans
6.Current situation of medicinal animal breeding and research progress in sustainable utilization of resources.
Cheng-Cai ZHANG ; Jia WANG ; Yu-Jie ZHOU ; Xiao-Yu DAI ; Xiu-Fu WAN ; Chuan-Zhi KANG ; De-Hua WU ; Jia-Hui SUN ; Sheng WANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(16):4397-4406
Traditional Chinese medicine(TCM) is the pillar for the development of motherland medicine, and animal medicine has a long history of application in China, characterized by wide resources, strong activity, definite efficacy, and great benefits. It has significant potential and important status in the consumption market of raw materials of TCM. In the context of global climate change, farming system alterations, and low renewability, the depletion of wild medicinal animal resources has accelerated. Accordingly, the conservation and sustainable utilization of wild resources of animal medicinal materials has become a problem that garners increasing attention and urgently needs to be solved. This paper summarizes the current situation of domestic and foreign medicinal animal breeding and research progress in industrial application in recent years and points out the issues related to standardized breeding, germplasm selection and breeding, and quality evaluation standards for medicinal animals. Furthermore, this paper discusses standardized breeding, quality standards, resource protection and utilization, and the search for alternative resources for rare and endangered medicinal animals. It proposes that researchers should systematically carry out in-depth basic research on animal medicine, improve the breeding scale and level of medicinal animals, employ modern technology to enhance the quality standards of medicinal materials, and strengthen the research and development of alternative resources. This approach aims to effectively address the relationship between protection and utilization and make a significant contribution to the sustainable development of medicinal animal resources and the animal-based Chinese medicinal material industry.
Animals
;
Breeding
;
China
;
Medicine, Chinese Traditional
;
Conservation of Natural Resources
7.Bone loss in patients with spinal cord injury: Incidence and influencing factors.
Min JIANG ; Jun-Wei ZHANG ; He-Hu TANG ; Yu-Fei MENG ; Zhen-Rong ZHANG ; Fang-Yong WANG ; Jin-Zhu BAI ; Shu-Jia LIU ; Zhen LYU ; Shi-Zheng CHEN ; Jie-Sheng LIU ; Jia-Xin FU
Chinese Journal of Traumatology 2025;28(6):477-484
PURPOSE:
To investigate the incidence and influencing factors of bone loss in patients with spinal cord injury (SCI).
METHODS:
A retrospective case-control study was conducted. Patients with SCI in our hospital from January 2019 to March 2023 were collected. According to the correlation between bone mineral density (BMD) at different sites, the patients were divided into the lumbar spine group and the hip joint group. According to the BMD value, the patients were divided into the normal bone mass group (t > -1.0 standard deviation) and the osteopenia group (t ≤ -1.0 standard deviation). The influencing factors accumulated as follows: gender, age, height, weight, cause of injury, injury segment, injury degree, time after injury, start time of rehabilitation, motor score, sensory score, spasticity, serum value of alkaline phosphatase, calcium, and phosphorus. The trend chart was drawn and the influencing factors were analyzed. SPSS 26.0 was used for statistical analysis. Correlation analysis was used to test the correlation between the BMD values of the lumbar spine and bilateral hips. Binary logistic regression analysis was used to explore the influencing factors of osteoporosis after SCI. p < 0.05 was considered statistically significant.
RESULTS:
The incidence of bone loss in patients with SCI was 66.3%. There was a low concordance between bone loss in the lumbar spine and the hip, and the hip was particularly susceptible to bone loss after SCI, with an upward trend in incidence (36% - 82%). In this study, patients with SCI were divided into the lumbar spine group (n = 100) and the hip group (n = 185) according to the BMD values of different sites. Then, the lumbar spine group was divided into the normal bone mass group (n = 53) and the osteopenia group (n = 47); the hip joint group was divided into the normal bone mass group (n = 83) and the osteopenia group (n = 102). Of these, lumbar bone loss after SCI is correlated with gender and weight (p = 0.032 and < 0.001, respectively), and hip bone loss is correlated with gender, height, weight, and time since injury (p < 0.001, p = 0.015, 0.009, and 0.012, respectively).
CONCLUSIONS
The incidence of bone loss after SCI was high, especially in the hip. The incidence and influencing factors of bone loss in the lumbar spine and hip were different. Patients with SCI who are male, low height, lightweight, and long time after injury were more likely to have bone loss.
Humans
;
Spinal Cord Injuries/complications*
;
Male
;
Female
;
Retrospective Studies
;
Incidence
;
Adult
;
Bone Density
;
Middle Aged
;
Case-Control Studies
;
Osteoporosis/etiology*
;
Lumbar Vertebrae
;
Bone Diseases, Metabolic/etiology*
;
Aged
;
Risk Factors
8.Comparative epidemiology and treatment outcomes at trauma centers: A cross-national analysis of the United States and China.
Yong FU ; Liu-Yi FAN ; Xin-Jie LUO ; Lei LI ; Delbrynth P MITCHAO ; Kenji INABA ; Guan-Qiao LIU ; Bin YU
Chinese Journal of Traumatology 2025;28(6):399-403
PURPOSE:
Although there are significant differences between China and the United States (US) in trauma medical services, there has been no direct comparative research on the epidemiological data of trauma centers between the 2 countries. This study aims to fill this research gap by directly comparing trauma centers in China and the US, providing valuable data and insights for the development of trauma centers in both countries, promoting academic exchange and cooperation internationally, and enhancing the level of global trauma medical care.
METHODS:
This is a multicenter retrospective descriptive study. Data were collected for trauma patients with an injury severity score ≥16 treated from September 2013 to September 2019 at 2 hospital trauma centers in these 2 countries. Detailed clinical data (including injury mechanism, age, injury site, injury severity score, pre-hospital transport time, whether blood transfusion was performed, whether resuscitative thoracotomy was conducted, hospital and intensive care unit stay duration, the number of organ donor patients, mortality rates, and costs) were meticulously compiled and retrospectively analyzed to identify differences between the 2 trauma centers. The comparison was conducted using SPSS 23 software. Continuous variables are reported as median (Q1, Q3), and Mann Whitney U test is used to compare the median of continuous variables. Use clinically relevant critical points to classify continuous variables, with categorical variables represented as n (%), and comparisons were made between the 2 groups using the χ2 test or Fisher's exact test. Statistical significance was defined as a 2-sided p < 0.05.
RESULTS:
These results point to significant differences in trauma center capacity, pre-hospital transport times, treatment procedures, hospital stay duration, mortality rates, and costs between the 2 centers. The volume of patients in trauma centers is less in China (2465 vs. 5288). Pre-hospital transport time was notably longer in China (180 min vs. 14 min), and the rate of emergency blood transfusions was lower in China (18.4% vs. 50.6%), Emergency thoracotomy was not performed in China but was conducted in 9.8% of cases in the US. Hospitalization costs were significantly lower in China than in the US ($5847 vs. $75,671).
CONCLUSION
There are clear differences in trauma center capacity (number of patients treated), pre-hospital transport time, age distribution of injured patients, injury mechanisms, injury sites, whether emergency thoracotomy is performed, hospital costs, and length of stay between the 2 trauma centers in China and America. Understanding these differences can help us further recognize the characteristics of Eastern and Western trauma patients.
Humans
;
China/epidemiology*
;
Trauma Centers/statistics & numerical data*
;
Retrospective Studies
;
United States/epidemiology*
;
Male
;
Female
;
Wounds and Injuries/therapy*
;
Middle Aged
;
Adult
;
Injury Severity Score
;
Length of Stay/statistics & numerical data*
;
Treatment Outcome
9.The Enhancing Effects and Underlying Mechanism of Ionizing Radiation on Adipogenic Differentiation of Mesenchymal Stem Cells via Regulating Oxidative Stress Pathway.
Fu-Hao YU ; Bo-Feng YIN ; Pei-Lin LI ; Xiao-Tong LI ; Jia-Yi TIAN ; Run-Xiang XU ; Jie TANG ; Xiao-Yu ZHANG ; Wen-Jing ZHANG ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):246-254
OBJECTIVE:
To investigate the effects and underlying mechanism of ionizing radiation on the adipogenic of mesenchymal stem cells (MSCs).
METHODS:
Mouse MSCs were cultured in vitro and treated with 2 Gy and 6 Gy radiation with 60Co, and the radiation dose rate was 0.98 Gy/min. Bulk RNA-seq was performed on control and irradiated MSCs. The changes of adipogenic differentiation and oxidative stress pathways of MSC were revealed by bioinformatics analysis. Oil Red O staining was used to detect the adipogenic differentiation ability of MSCs in vitro, and real-time fluorescence quantitative PCR (qPCR) was used to detect the expression differences of key regulatory factors Cebpa, Lpl and Pparg after radiation treatment. At the same time, qPCR and Western blot were used to detect the effect of inhibition of Nrf2, a key factor of antioxidant stress pathway, on the expression of key regulatory factors of adipogenesis. Moreover, the species conservation of the irradiation response of human bone marrow MSCs and mouse MSC was determined by qPCR.
RESULTS:
Bulk RNA-seq suggested that ionizing radiation promotes adipogenic differentiation of MSCs and up-regulation of oxidative stress-related genes and pathways. The results of Oil Red O staining and qPCR showed that ionizing radiation promoted the adipogenesis of MSCs, with high expression of Cebpa, Lpl and Pparg, as well as oxidative stress-related gene Nrf2. Nrf2 pathway inhibitors could further enhance the adipogenesis of MSCs in bone marrow after radiation. Notably, the similar regulation of oxidative pathways and enhanced adipogenesis post irradiation were observed in human bone marrow MSCs. In addition, irradiation exposure led to up-regulated mRNA expression of interleukin-6 and down-regulated mRNA expression of colony stimulating factor 2 in human bone marrow MSCs.
CONCLUSION
Ionizing radiation promotes adipogenesis of MSCs in mice, and oxidative stress pathway participates in this effect, blocking Nrf2 further promotes the adipogenesis of MSCs. Additionally, irradiation activates oxidative pathways and promotes adipogenic differentiation of human bone marrow MSCs.
Mesenchymal Stem Cells/cytology*
;
Oxidative Stress/radiation effects*
;
Animals
;
Adipogenesis/radiation effects*
;
Mice
;
Radiation, Ionizing
;
Cell Differentiation/radiation effects*
;
Humans
;
NF-E2-Related Factor 2/metabolism*
;
PPAR gamma
;
Cells, Cultured
10.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*

Result Analysis
Print
Save
E-mail