1.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
2.Promotion effect of FOXCUT as a microRNA sponge for miR-24-3p on progression in triple-negative breast cancer through the p38 MAPK signaling pathway
Xiafei YU ; Fangze QIAN ; Xiaoqiang ZHANG ; Yanhui ZHU ; Gao HE ; Junzhe YANG ; Xian WU ; Yi ZHOU ; Li SHEN ; Xiaoyue SHI ; Hongfei ZHANG ; Xiao’an LIU
Chinese Medical Journal 2024;137(1):105-114
Background::Triple-negative breast cancer (TNBC) is a type of highly invasive breast cancer with a poor prognosis. According to new research, long noncoding RNAs (lncRNAs) play a significant role in the progression of cancer. Although the role of lncRNAs in breast cancer has been well reported, few studies have focused on TNBC. This study aimed to explore the biological function and clinical significance of forkhead box C1 promoter upstream transcript (FOXCUT) in triple-negative breast cancer.Methods::Based on a bioinformatic analysis of the cancer genome atlas (TCGA) database, we detected that the lncRNA FOXCUT was overexpressed in TNBC tissues, which was further validated in an external cohort of tissues from the General Surgery Department of the First Affiliated Hospital of Nanjing Medical University. The functions of FOXCUT in proliferation, migration, and invasion were detected in vitro or in vivo. Luciferase assays and RNA immunoprecipitation (RIP) were performed to reveal that FOXCUT acted as a competitive endogenous RNA (ceRNA) for the microRNA miR-24-3p and consequently inhibited the degradation of p38. Results::lncRNA FOXCUT was markedly highly expressed in breast cancer, which was associated with poor prognosis in some cases. Knockdown of FOXCUT significantly inhibited cancer growth and metastasis in vitro or in vivo. Mechanistically, FOXCUT competitively bounded to miR-24-3p to prevent the degradation of p38, which might act as an oncogene in breast cancer. Conclusion::Collectively, this research revealed a novel FOXCUT/miR-24-3p/p38 axis that affected breast cancer progression and suggested that the lncRNA FOXCUT could be a diagnostic marker and therapeutic target for breast cancer.
3.Construction of self-assembled nanoparticle tumor vaccine OVA257-264-mi3 and evaluation of its protective efficacy
Yuan CHEN ; Chen GAO ; Yuhang LI ; Zhiyuan CUI ; Xin CHENG ; Yi ZHANG ; Bo YU ; Jiang GU ; Xian YANG
Journal of Army Medical University 2024;46(12):1361-1368
Objective To construct SpyCatcher-mi3 nanoparticle vaccine delivery vectors,evaluate their role in enhancing the immunogenicity of the ovalbumin CD8+T-cell epitope peptide,OVA257-264,and determine its protective effect in a model which mice were immunized and subcutaneously challenged with E.G7-OVA tumor cells.Methods SpyCatcher-mi3 proteins were expressed by E.coli and purified by affinity chromatography and anion exchange chromatography sequentially.OVA257-264-SpyTag peptide was obtained by synthesis.The OVA257-264-mi3 nanoparticles were produced by the SpyTag/SpyCatcher system.The toxicity of OVA257-264-mi3 was evaluated using hemolysis assay,CCK-8 assay and mouse experiment.A total of 42 female SPF-grade C57BL/6 mice(6~8 weeks old,18~20 g)were randomly divided into OVA257-264-mi3,OVA257-264,and control groups,with 14 mice in each group.Then the mice in each group were immunized on days 0,14 and 28.In 14 d after the last immunization,the amounts of spot-forming cells(SFCs,indicating IFN-γ secreting cells in splenic lymphocytes)were determined using ELISpot assay to evaluate their immunogenicity.After the immunized mice were subcutaneously implanted with E.G7-OVA tumor cells,the antitumor effect of the vaccine in prophylactic xenograft tumor model was evaluate by observing tumor volumes with a caliper and tumor growth with MRI.Results Both SpyCatcher-mi3 and OVA257-264-mi3 could be self-assembled to form homogeneous and stable nanoparticles,with an average particle size of about 43.8 and 91.3 nm,respectively.The OVA257-264-mi3 was safe for in vitro and in vivo toxicity evaluation.The number of IFN--y secreting cells per 1 × 106 splenic lymphocytes reached 253 in the OVA257-264-mi3 group of mice,significantly higher than that in the OVA257-264 group and the Control group(P<0.05).The tumor volume of mice in the OVA257-264-mi3 group was about 151.1 mm3 on day 22,which was significantly smaller than that of the OVA257-264 group and the Control group(P<0.05),and the survival rate during the observation period reached 60%,which was significantly higher than that of the OVA257-264 groups(P<0.05).Conclusion Nanoparticle vaccine OVA257-264-mi3 is successfully constructed,and it shows enhancing effect on the immunogenicity of the antigen epitope peptide,and exerts protective effect on prophylactic xenograft tumor model,providing a theoretical basis for the research of tumor neoantigen vaccines.
4.Establishment of primary breast cancer cell line as new model for drug screening and basic research
Xian HAO ; Jianjun HUANG ; Wenxiu YANG ; Jinting LIU ; Junhong ZHANG ; Yubei LUO ; Qing LI ; Dahong WANG ; Yuwei GAO ; Fuyun TAN ; Li BO ; Yu ZHENG ; Rong WANG ; Jianglong FENG ; Jing LI ; Chunhua ZHAO ; Xiaowei DOU
China Oncology 2024;34(6):561-570
Background and purpose:In 2016 the National Cancer Institute(NCI)decided stopping to use NCI-60 cell lines for drug screening,suggesting that tumor cell lines were losing their value as a tool for drug discovery and basic research.The reason for NCI-60 cells'retirement'was that the preclinical studies based on traditional cellular and animal models did not obtain the corresponding expected efficacy in clinical trials.Since the major cancer behaviors,such as proliferation and metastasis,are fundamentally altered with long-term culture,the tumor cell lines are not representative of the characteristics of cancer in patients.Currently,scientists hope to create a new cancer model that are derived from fresh patient samples and tagged with details about their clinical past.Our purpose was to create patient-derived breast cancer primary cell lines as new cancer model for drug screening and basic research.Methods:Breast cancer tissues were collected in the Department of Breast Surgery,Affiliated Hospital of Guizhou Medical University.The collection of tumor tissue samples was approved by the Ethics Committee of the Affiliated Hospital of Guizhou Medical University(approval number:2022 ethics No.313),and the collection and use of tumor tissues complied with the Declaration of Helsinki.The primary breast cancer cell lines were isolated from the patient's breast cancer tissues and cultured in BCMI medium.After the cells proliferated,the media were replaced with DEME medium.Cell line STR genotyping was done to determine cell-specific genetic markers and identification.Clone formation assay and transplantation assay were done to analyze the ability of breast cancer primary cell lines to form tumors.Results:We created 6 primary breast cancer cell lines.The 6 primary breast cancer cell lines from the patients were tagged with the definitively clinicopathological features,clinical diagnosis,therapeutic regimens,clinical effectiveness and prognostic outcomes.The STR genotyping assays identified the genetic markers and determined the identities of the 6 primary breast cancer cell lines.Clone formation assays and transplantation assay showed that the proliferative capacities of the patient-derived primary breast cancer cell lines were significantly greater compared with the conventional breast cancer cell lines.Conclusion:We created a panel of 6 patient-derived primary breast cancer cell lines as new cancer model for drug screening and basic research in breast cancer.
5.Differential expression analysis of the transcriptome for hurnan basal ganglia from normal donors and Parkinson's disease patients
Gao-Yu ZU ; Feng-Jiao LI ; Wei-Wei XIAN ; Yang-Yang GUO ; Bai-Cheng ZHAO ; Wen-Sheng LI ; Lin-Ya YOU
Acta Anatomica Sinica 2024;55(4):482-492
Objective To analyze the molecular markers of various nuclei in the human basal ganglia and the differentially expressed genes(DEGs)among different nuclei,gender,and Parkinson's disease(PD),followed by the biological function annotations of the DEGs.Methods Forty-five specimens of basal ganglia from 10 human postmortem brains were divided into control and PD groups,and the control group was further categorized into female and male groups.RNA from each sample was extracted for high-throughput transcriptome sequencing.Bioinformatic analysis was conducted to identify molecular markers of each nuclei in the control group,nuclei-specific,gender-specific,and PD-specific DEGs,followed by gene enrichment analysis and functional annotation.Results Sequencing analysis revealed top DEGs such as DRD1,FOXG1,and FAM183A in the caudate;SLC6A3,EN1,SLC18A2,and TH in the substantia nigra;MEPE and FGF10 in the globus pallidus;and SLC17A6,PMCH,and SHOX2 in the subthalamic nucleus.In them,putamen showed some overlapping DEGs with caudate,such as DRD1 and FOXG1.A significant number of DEGs were identified among different nuclei in the control group,with the highest number between caudate and globus pallidus(9321),followed by putamen and globus pallidus(6341),caudate and substantia nigra(6054),and substantia nigra and subthalamic nucleus(44).Gene enrichment analysis showed that downregulated DEGs between caudate and globus pallidus were significantly enriched in processes like myelination of neurons and cell migration.Upregulated DEGs between putamen and globus pallidus were enriched processes like chemical synaptic transmission and regulation of membrane potential,while downregulated DEGs were enriched in myelination and cell adhesion.Upregulated DEGs between caudate and substantia nigra were enriched in processes like chemical synaptic transmission and axonal conduction,while downregulated DEGs were enriched in myelination of neurons.Totally 468,548,1402,333,and 341 gender-specific upregulated DEGs and 756,988,2532,444,and 1372 downregulated DEGs were identified in caudate,putamen,substantia nigra,globus pallidus,and subthalamus nucleus.Gene enrichment analysis revealed upregulated DEGs mostly enriched in pathways related to immune response and downregulated DEGs in chemical synaptic transmission.At last,709,852,276,507,and 416 PD-specific upregulated DEGs and 830,2014,1218,836,and 1730 downregulated DEGs were identified in caudate,putamen,substantia nigra,globus pallidus,and subthalamus nucleus.Gene enrichment analysis revealed upregulated DEGs mostly enriched in apoptotic regulation and downregulated DEGs in chemical synaptic transmission and action potential regulation.Conclusion We identified and analysed the molecular markers of different human basal ganglia nuclei,as well as DEGs among different nuclei,different gender,and between control and PD.
6.Treadmill Exercise Improves Cognitive Dysfunction in Diabetic Mice by Regulating PANoptosis Through the p38 MAPK Signaling Pathway
Ke-Yan SHENG ; Yu-Yan CHEN ; Yuan GAO ; Bao-Wen ZHANG ; Meng ZHANG ; Zhi WANG ; Xian-Juan KOU
Chinese Journal of Biochemistry and Molecular Biology 2024;40(7):987-998
Cognitive dysfunction is one of the serious complications of type 2 diabetes.Exercise interven-tion has a certain effect on improving diabetes cognition,but the exact process remains ambiguous.This research aims to explore the impact and molecular processes of treadmill exercises in enhancing cognitive impairments in type 2 diabetic mice.Ten m/m 8-week-old male mice were used as the control group.Forty db/db mice,each 8 weeks old and male,were categorized into four distinct groups with each group containing 10 mice,including the db/db group(model group),db+Exe group(exercise group),db+Exe+SB203580 group(exercise combined with the p38 MAPK inhibitor group),db+SB203580 group(p38 MAPK inhibitor group).db+Exe group and db+Exe+SB203580 group were subjected to treadmill running intervention(40 min/time,5 times/week,a total of 8 weeks).db+Exe+SB203580 and db+SB203580 group were intraperitoneally injected with SB203580(5 mg/kg,5 times/week,8 weeks)2 hours before treadmill exercise.The results of body weights and fasting blood glucose measurement showed that 8-week treadmill exercise could significantly reduce the body mass and fasting blood glucose levels(P<0.01);the results of water maze showed that treadmill exercise improved cognitive dysfunction in diabetic mice(P<0.05).Immunofluorescence staining revealed that treadmill exercise diminished the fluorescence intensity of NLRP3 in hippocampus,and there was a significant difference in CA1 and CA3 regions(P<0.05).Treadmill exercise reduced the fluorescence intensity of PI in the hippocampus,and there was a significant difference in the DG region(P<0.01).The results of qRT-PCR revealed that treadmill exercise decreased IL-1β and IL-18 mRNA levels in hippocampus,with a notable difference in IL-1β mRNA levels(P<0.05).Western blotting analysis revealed that treadmill exercise reduced the concentrations of Caspase3,Caspase9 and Bax in hippocampus(P<0.01),reduced the concentrations of TXNIP,NLRP3,GSDMD-N,IL-1β,IL-18,Cleaved Caspase1 and Caspasel(P<0.05),decreased the levels of p-RIPK1,RIPK1,p-RIPK3 and RIPK3(P<0.05).After adding p38 inhibitors,treadmill ex-ercise combined with p38 inhibitor intervention further inhibited the expression of Caspase3,TXNIP,GS-DMD-N and IL-18(P<0.05),and the expression levels of Caspase9,Bax,NLRP3,IL-1β,Cleaved Caspase 1 and Caspase 1 also showed a downward trend.The expression of RIPK1 and p-RIPK3 in-creased significantly(P<0.05),and the protein expression levels of p-p38,p-RIPK1 and RIPK3 showed an upward trend.In conclusion,treadmill running intervention can effectively improve the cogni-tive dysfunction in type 2 diabetic mice,and its mechanism is partly through the p38 MAPK signaling pathway to regulate PANoptosis.
7.Risk factors for recurrence of childhood acute lymphoblastic leukemia after treatment with the Chinese Children's Cancer Group ALL-2015 protocol
Xia CHEN ; Xiao-Ying LEI ; Xian-Min GUAN ; Ying DOU ; Xian-Hao WEN ; Yu-Xia GUO ; Hui-Qin GAO ; Jie YU
Chinese Journal of Contemporary Pediatrics 2024;26(7):701-707
Objective To investigate the cumulative incidence of recurrence(CIR)in children with acute lymphoblastic leukemia(ALL)after treatment with the Chinese Children's Cancer Group ALL-2015(CCCG-ALL-2015)protocol and the risk factors for recurrence.Methods A retrospective analysis was conducted on the clinical data of 852 children who were treated with the CCCG-ALL-2015 protocol from January 2015 to December 2019.CIR was calculated,and the risk factors for the recurrence of B-lineage acute lymphoblastic leukemia(B-ALL)were analyzed.Results Among the 852 children with ALL,146(17.1%)experienced recurrence,with an 8-year CIR of 19.8%±1.6%.There was no significant difference in 8-year CIR between the B-ALL group and the acute T lymphocyte leukemia group(P>0.05).For the 146 children with recurrence,recurrence was mainly observed in the very early stage(n=62,42.5%)and the early stage(n=46,31.5%),and there were 42 children with bone marrow recurrence alone(28.8%)in the very early stage and 27 children with bone marrow recurrence alone(18.5%)in the early stage.The Cox proportional-hazards regression model analysis showed that positive MLLr fusion gene(HR=4.177,95%CI:2.086-8.364,P<0.001)and minimal residual disease≥0.01%on day 46(HR=2.013,95%CI:1.163-3.483,P=0.012)were independent risk factors for recurrence in children with B-ALL after treatment with the CCCG-ALL-2015 protocol.Conclusions There is still a relatively high recurrence rate in children with ALL after treatment with the CCCG-ALL-2015 protocol,mainly bone marrow recurrence alone in the very early stage and the early stage,and minimal residual disease≥0.01%on day 46 and positive MLLr fusion gene are closely associated with the recurrence of B-ALL.
8.Coronary lithotripsy for treatment of calcified lesions with under expanded stents:two cases report
Ming-Duo ZHANG ; Bing-Yu GAO ; Jin-Fan TIAN ; Min ZHANG ; Chang-Jiang GE ; Xian-Tao SONG
Chinese Journal of Interventional Cardiology 2024;32(4):228-231
Calcified lesions increase the difficulty of interventional therapy for coronary heart disease,and increase the risk of perioperative and long-term complications.Pretreatment of calcified lesions is very important.Coronary lithotripsy(IVL)is used more and more in calcified lesions,and many clinical trials have proved its effectiveness and safety.Stent underexpansion is an important risk factor for stent thrombosis and restenosis,which increases the incidence of complications.At present,there is no effective coping strategy or clear consensus or guidelines for the treatment of stent underexpansion caused by calcified lesions.There are few reports about the treatment of stent under expansion by IVL,and most of them are case reports and small sample studies.In this paper,two cases of stent under expansion were reported.After stent implantation,stent under expansion was found,and IVL was used to treat the cases,which achieved good results.This paper reports 2 cases of stent under expansion to explore the efficacy and safety of IVL in the treatment of such lesions.
9.Exploration of the Mechanism of Toddalia asiatica in the Treatment of Ischemic Stroke:Based on Network Pharmacology and Experimental Validation
Jian-Hong GAO ; Dan YANG ; Gang WANG ; Tian-Ying SONG ; Fang-Yu ZHAO ; Xian-Bing CHEN
Chinese Pharmacological Bulletin 2024;40(7):1375-1383
Aim This study aims to investigate the therapeutic effect and underlying mechanism of Todda-lia asiatica in the treatment of ischemic stroke(IS),utilizing network pharmacology,molecular docking technology,and animal experiments.Methods To screen the chemical components of Toddalia asiatica and its targets related to IS,a database was utilized.A protein-protein interaction(PPI)network was con-structed,followed by KEGG pathway enrichment anal-ysis.Molecular docking was performed to investigate the interaction between the components and target pro-teins.Finally,the effects of the drug on the PI3K/AKT/mTOR pathway and autophagy were validated through animal experiments.We established a middle cerebral artery occlusion(MCAO)rat model and di-vided the rats into the model group,Donepezil hydro-chloride group,Toddalia asiatica group,and sham op-eration group randomly.Observed the pathological changes in neurons of the rat hippocampal and cortical regions induced by the drug,performed immunohisto-chemical analysis to detect and localize mTOR expres-sion,and used Western blot to assess the expression levels of PI3K,p-PI3K,AKT,p-AKT,mTOR,as well as autophagy markers(LC3-Ⅱ and p62).Re-sults A total of 22 active ingredients from Toddalia asiatica,including AKT1 and MAPK3,were identified through screening.Additionally,194 signaling path-ways,such as PI3K/AKT and MAPK,were analyzed.The active compounds in Toddalia asiatica demonstra-ted stable binding affinity with targets associated with ischemic stroke.The results of the animal experiment indicated that,compared to the sham-operated group,the neuronal distribution in the hippocampal and corti-cal regions of the model group rats became sparser and more disorganized.There was a decrease in the number of Nissl bodies and cytoplasmic vacuolization.The ex-pression of mTOR-positive cells in the hippocampal and cortical regions was reduced.Additionally,the ex-pression levels of p-PI3K,p-AKT,mTOR,and p62 in the rat hippocampal tissue decreased(P<0.05,P<0.01),while the expression of LC3-Ⅱ increased(P<0.01).Compared with the model group,the rats in the Toddalia asiatica and the Donepezil hydrochloride groups effectively improved the aforementioned indica-tors in rats.Conclusions Network pharmacology a-nalysis has revealed the promising potential of Toddalia asiatica in treating ischemic stroke,attributed to its di-verse components,targets,and pathways.The animal experiment showed that Toddalia asiatica can protect the neuronal structure in the hippocampal and cortical regions,which may be related to the inhibition of ex-cessive autophagy mediated by the PI3 K/AKT/mTOR pathway.
10.Total saponins from Trillium tschonoskii maxim alleviates cerebral ischemia-reperfusion injury by inhibiting ferroptosis through Keap-1/Nrf2/HO-1 and Nrf2/SLC7A11/GPX4 pathways
Jian-Hong GAO ; Tian-Ying SONG ; Chao-Xi TIAN ; Fang-Yu ZHAO ; Yi-Duo HE ; Xin LIU ; Xian-Bing CHEN
Chinese Pharmacological Bulletin 2024;40(10):1850-1857
Aim To examine the neuroprotective im-pacts of total saponins from Trillium tschonoskii maxim(TST)on cerebral ischemia-reperfusion injury(CIRI)in rats and delve into the mechanisms of ferroptosis.Methods The CIRI model was prepared by dividing male SD rats into the model group,TST(0.1 g·kg-1)group,Donepezil hydrochloride(0.45 mg·kg-1)group,and sham group.The cognitive functions of rats in each group were assessed through the Morris water maze test,the changes in neurological function were evaluated using the Zea-Longa method,the infarct area was observed via TTC staining,and the pathologi-cal alterations in brain tissue were analysed using HE and Nissl staining.To further investigate the underly-ing mechanism,the mitochondrial structural changes were examined using transmission electron microscopy,and the levels of GSH-PX,MDA,and SOD were ana-lyzed.Additionally,the expressions of GPX4 and Nrf2 proteins were evaluated through immunohistochemistry and immunofluorescence.Furthermore,the protein lev-els of Keap1/Nrf2/HO-1 and Nrf2/SLC7A11/GPX4 pathways in rats were examined using Western blot-ting.Results The rats in the model group displayed diminished learning and memory capabilities in com-parison to those in the sham group,as well as a signifi-cantly increased cerebral infarction area and higher neurological function scores(P<0.01),significantly increased cerebral infarct area,disordered and loosely arranged neurons,and reduced Nissl bodies.Addition-ally,mitochondria showed typical signs of ferroptosis.Changes related to ferroptosis included decreased activ-ities of SOD and GSH-PX(P<0.01)and increased MDA levels(P<0.01).The expression of GPX4 and Nrf2-positive cells was significantly reduced,along with decreased fluorescence intensity of GPX4.Further-more,the protein expression of Keap1,Nrf2,HO-1,GPX4,SLC7A11 in the hippocampus decreased(P<0.05,P<0.01).Following the administration of TST,these effects showed improvement.Conclusions TST has neuroprotective effects,enhancing learning and memory abilities while reducing oxidative stress levels.The mechanism may involve the inhibition of ferroptosis through the Keap-1/Nrf2/HO-1 and Nrf2/SLC7 A11/GPX4 pathways.

Result Analysis
Print
Save
E-mail