1.DIA Proteomics Reveals Mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis Extract in Treating α-Syn Transgenic Parkinson's Disease in Mice
Qi ZHENG ; Yi LU ; Donghua YU ; Liangyou ZHAO ; Chunsheng LIN ; Fang LU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):40-50
ObjectiveTo investigate the mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis extract (ASH) in treating Parkinson's disease (PD) in mice by Data-Independent Acquisition (DIA) proteomics. MethodsThe α-Synuclein (α-Syn) transgenic PD mice were selected as suitable models for PD, and they were randomly assigned into PD, ASH (61.25 mg·kg-1), and Madopar (97.5 mg·kg-1) groups. Male C57BL/6 mice of the same age were selected as the control group, with eight mice in each group. Mice were administrated with corresponding drugs by gavage once a day for 20 days. The pole climbing time and the number of autonomic activities were recorded to evaluate the exercise ability of mice. Hematoxylin-eosin staining was employed to observe neuronal changes in the substantia nigra of PD mice. Immunohistochemistry (IHC) was employed to measure the tyrosine hydroxylase (TH) activity in the substantia nigra and assess the areal density of α-Syn in the striatum. DIA proteomics was used to compare protein expression in the substantia nigra between groups. IHC was utilized to validate key differentially expressed proteins, including Lactotransferrin, Notch2, Ndrg2, and TMEM 166. The cell counting kit-8 (CCK-8) method was used to investigate the effect of ASH on the viability of PD cells with overexpression of α-Syn. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the protein and mRNA levels of Lactotransferrin, Notch2, Ndrg2, and TMEM 166 in PD cells. ResultsCompared with the control group, the model group showed prolonged pole climbing time, diminished coordination ability, reduced autonomic activities (P<0.01), and reduced swelling neurons. Compared with the model group, ASH and Madopar reduced the climbing time, increased autonomic activities (P<0.01), and ameliorated neuronal damage. Compared with the control group, the model group showed a decrease in TH activity in the substantia nigra and an increase in α-Syn accumulation in the striatum (P<0.01). Compared with the model group, the ASH group showed an increase in TH activity and a reduction in α-Syn accumulation (P<0.05). DIA proteomics revealed a total of 464 differentially expressed proteins in the model group compared with the control group, with 323 proteins being up-regulated and 141 down-regulated. A total of 262 differentially expressed proteins were screened in the ASH group compared with the model group, including 85 proteins being up-regulated and 177 down-regulated. Kyoto encylopedia of genes and genomes (KEGG) pathway analysis indicated that ASH primarily regulated the Notch signaling pathway. The model group showed up-regulation in protein levels of Notch2, Ndrg2, and TMEM 166 and down-regulation in the protein level of Lactotransferrin compared with the control group (P<0.01). Compared with the model group, ASH down-regulated the protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.05) while up-regulating the protein level of Lactotransferrin (P<0.01). The IHC results corroborated the proteomics findings. The cell experiment results showed that compared with the control group, the modeling up-regulated the mRNA and protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.01), while down-regulating the mRNA and protein levels of Lactotransferrin (P<0.01). Compared with the model group, ASH reduced the mRNA and protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.01), while increasing the mRNA and protein levels of Lactotransferrin (P<0.05, P<0.01). ConclusionASH may Synergistically inhibit the Notch signaling pathway and mitigate neuronal damage by down-regulating the expression of Notch2 and Ndrg2. Additionally, by up-regulating the expression of Lactotransferrin and down-regulating the expression of TMEM166, ASH can address brain iron accumulation, intervene in ferroptosis, inhibit mitophagy, and mitigate reactive oxygen species damage, thereby protecting nerve cells and contributing to the treatment of PD.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.PES1 Repression Triggers Ribosomal Biogenesis Impairment and Cellular Senescence Through p53 Pathway Activation
Chang-Jian ZHANG ; Yu-Fang LI ; Feng-Yun WU ; Rui JIN ; Chang NIU ; Qi-Nong YE ; Long CHENG
Progress in Biochemistry and Biophysics 2025;52(7):1853-1865
ObjectiveThe nucleolar protein PES1 (Pescadillo homolog 1) plays critical roles in ribosome biogenesis and cell cycle regulation, yet its involvement in cellular senescence remains poorly understood. This study aimed to comprehensively investigate the functional consequences of PES1 suppression in cellular senescence and elucidate the molecular mechanisms underlying its regulatory role. MethodsInitially, we assessed PES1 expression patterns in two distinct senescence models: replicative senescent mouse embryonic fibroblasts (MEFs) and doxorubicin-induced senescent human hepatocellular carcinoma HepG2 cells. Subsequently, PES1 expression was specifically downregulated using siRNA-mediated knockdown in these cell lines as well as additional relevant cell types. Cellular proliferation and senescence were assessed by EdU incorporation and SA-β-gal staining assays, respectively. The expression of senescence-associated proteins (p53, p21, and Rb) and SASP factors (IL-6, IL-1β, and IL-8) were analyzed by Western blot or qPCR. Furthermore, Northern blot and immunofluorescence were employed to evaluate pre-rRNA processing and nucleolar morphology. ResultsPES1 expression was significantly downregulated in senescent MEFs and HepG2 cells. PES1 knockdown resulted in decreased EdU-positive cells and increased SA‑β‑gal-positive cells, indicating proliferation inhibition and senescence induction. Mechanistically, PES1 suppression activated the p53-p21 pathway without affecting Rb expression, while upregulating IL-6, IL-1β, and IL-8 production. Notably, PES1 depletion impaired pre-rRNA maturation and induced nucleolar stress, as evidenced by aberrant nucleolar morphology. ConclusionOur findings demonstrate that PES1 deficiency triggers nucleolar stress and promotes p53-dependent (but Rb-independent) cellular senescence, highlighting its crucial role in maintaining nucleolar homeostasis and regulating senescence-associated pathways.
6.Effect of Stasis-dispelling and Detoxifying Therapy on Clinical Efficacy and JNK Signaling Pathway-related Protein Expression in Endometriosis Patients with Syndrome of Kidney Deficiency and Blood Stasis
Tingting WANG ; Zhaokang QI ; Jinxin REN ; Shuai ZHAO ; Chunxiao WEI ; Yi YU ; Fang LIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):120-129
ObjectiveTo observe the clinical efficacy of the stasis-dispelling and detoxifying therapy in endometriosis (EMs) patients with the syndrome of kidney deficiency and blood stasis and the effects of this therapy on the expression levels of proteins related to the c-Jun N-terminal kinase (JNK) signaling pathway. MethodsA total of 72 patients with EMs due to kidney deficiency and blood stasis who met the criteria at the Integrated Traditional Chinese and Western Medicine Center for Reproduction and Genetics of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine from March 2024 to February 2025 were selected and randomized into a treatment group and a control group, with 36 patients in each group. Another 36 patients undergoing in vitro fertilization-embryo transfer (IVF-ET) due to male factors alone were selected as the blank group. The treatment group took the Zishen Quyu Jiedu formula orally, while the control group and the blank group took placebos. The treatment course encompassed the cycle before ovarian stimulation and the oocyte retrieval cycle. The TCM syndrome score of kidney deficiency and blood stasis, as well as the serum level of cancer antigen 125 (CA125), were evaluated at the time of enrollment (before treatment) and on the trigger day (after treatment). Serum levels of sex hormones were measured on day 2 of the menstrual cycle. On the trigger day, the duration and dosage of gonadotropin (Gn) administration and the serum levels of hormones on the day of human chorionic gonadotropin (HCG) injection were assessed. Embryo outcomes were evaluated 3 days after oocyte retrieval, and clinical pregnancy rates were assessed 28 days after embryo transfer. The baseline data of three groups were observed. The TCM syndrome scores and serum CA125 levels before and after treatment were compared between the treatment and control groups. The baseline endocrine levels, Gn days, Gn dosage, hormone levels on the day of HCG administration, number of oocytes retrieved, number of 2 pronucleus (2PN) fertilizations, number of available embryos, high-quality embryo rate, and clinical pregnancy rate were also assessed in all three groups. Six patients from each group were selected for determination of the protein levels of JNK, c-Jun, and nuclear receptor subfamily 4 group A member 2 (NR4A2) in ovarian granulosa cells (GCs) on the day of oocyte retrieval by Western blot. Results(1) There were no statistically significant differences in the baseline data among three groups, indicating comparability. (2) Compared with the baseline within the same group, the treatment group showed a decrease in the syndrome score of kidney deficiency and blood stasis after treatment. After treatment, serum CA125 levels decreased in both groups (P<0.05), with a more substantial reduction in the treatment group, resulting in a difference between the two groups (P<0.05). (3) There were no significant differences among three groups in terms of baseline serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and progesterone (P), as well as the duration and dosage of Gn administration and the serum levels of LH, E2, and P on the day of HCG administration. (4) For embryo outcomes, the number of oocytes retrieved, 2PN fertilizations, available embryos, and high-quality embryo rates in the treatment group and the blank group were higher than those in the control group (P<0.05), and the treatment group and the blank group had similar 2PN fertilizations. (5) There were differences in clinical pregnancy rate among three groups (P<0.05), and the treatment group had higher pregnancy rate than the control and blank groups. (6) The protein levels of JNK, c-Jun, and NR4A2 in the GCs of the treatment group were lower than those in the control group (P<0.01) and close to those in the blank group (P<0.01). (7) No obvious adverse reactions were observed in any of the subjects during the clinical observation process. ConclusionZishen Quyu Jiedu formula can ameliorate the clinical symptoms of patients with EMs due to kidney deficiency and blood stasis, reduce the serum CA125 level, increase the number of oocytes retrieved, 2PN fertilizations, available embryos, and high-quality embryo rate, and improve pregnancy outcomes. The mechanism may involve downregulating the levels of JNK, c-Jun, and NR4A2 to reduce the apoptosis of ovarian GCs and improve the ovarian function in the patients.
7.Effect of Stasis-dispelling and Detoxifying Therapy on Clinical Efficacy and JNK Signaling Pathway-related Protein Expression in Endometriosis Patients with Syndrome of Kidney Deficiency and Blood Stasis
Tingting WANG ; Zhaokang QI ; Jinxin REN ; Shuai ZHAO ; Chunxiao WEI ; Yi YU ; Fang LIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):120-129
ObjectiveTo observe the clinical efficacy of the stasis-dispelling and detoxifying therapy in endometriosis (EMs) patients with the syndrome of kidney deficiency and blood stasis and the effects of this therapy on the expression levels of proteins related to the c-Jun N-terminal kinase (JNK) signaling pathway. MethodsA total of 72 patients with EMs due to kidney deficiency and blood stasis who met the criteria at the Integrated Traditional Chinese and Western Medicine Center for Reproduction and Genetics of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine from March 2024 to February 2025 were selected and randomized into a treatment group and a control group, with 36 patients in each group. Another 36 patients undergoing in vitro fertilization-embryo transfer (IVF-ET) due to male factors alone were selected as the blank group. The treatment group took the Zishen Quyu Jiedu formula orally, while the control group and the blank group took placebos. The treatment course encompassed the cycle before ovarian stimulation and the oocyte retrieval cycle. The TCM syndrome score of kidney deficiency and blood stasis, as well as the serum level of cancer antigen 125 (CA125), were evaluated at the time of enrollment (before treatment) and on the trigger day (after treatment). Serum levels of sex hormones were measured on day 2 of the menstrual cycle. On the trigger day, the duration and dosage of gonadotropin (Gn) administration and the serum levels of hormones on the day of human chorionic gonadotropin (HCG) injection were assessed. Embryo outcomes were evaluated 3 days after oocyte retrieval, and clinical pregnancy rates were assessed 28 days after embryo transfer. The baseline data of three groups were observed. The TCM syndrome scores and serum CA125 levels before and after treatment were compared between the treatment and control groups. The baseline endocrine levels, Gn days, Gn dosage, hormone levels on the day of HCG administration, number of oocytes retrieved, number of 2 pronucleus (2PN) fertilizations, number of available embryos, high-quality embryo rate, and clinical pregnancy rate were also assessed in all three groups. Six patients from each group were selected for determination of the protein levels of JNK, c-Jun, and nuclear receptor subfamily 4 group A member 2 (NR4A2) in ovarian granulosa cells (GCs) on the day of oocyte retrieval by Western blot. Results(1) There were no statistically significant differences in the baseline data among three groups, indicating comparability. (2) Compared with the baseline within the same group, the treatment group showed a decrease in the syndrome score of kidney deficiency and blood stasis after treatment. After treatment, serum CA125 levels decreased in both groups (P<0.05), with a more substantial reduction in the treatment group, resulting in a difference between the two groups (P<0.05). (3) There were no significant differences among three groups in terms of baseline serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and progesterone (P), as well as the duration and dosage of Gn administration and the serum levels of LH, E2, and P on the day of HCG administration. (4) For embryo outcomes, the number of oocytes retrieved, 2PN fertilizations, available embryos, and high-quality embryo rates in the treatment group and the blank group were higher than those in the control group (P<0.05), and the treatment group and the blank group had similar 2PN fertilizations. (5) There were differences in clinical pregnancy rate among three groups (P<0.05), and the treatment group had higher pregnancy rate than the control and blank groups. (6) The protein levels of JNK, c-Jun, and NR4A2 in the GCs of the treatment group were lower than those in the control group (P<0.01) and close to those in the blank group (P<0.01). (7) No obvious adverse reactions were observed in any of the subjects during the clinical observation process. ConclusionZishen Quyu Jiedu formula can ameliorate the clinical symptoms of patients with EMs due to kidney deficiency and blood stasis, reduce the serum CA125 level, increase the number of oocytes retrieved, 2PN fertilizations, available embryos, and high-quality embryo rate, and improve pregnancy outcomes. The mechanism may involve downregulating the levels of JNK, c-Jun, and NR4A2 to reduce the apoptosis of ovarian GCs and improve the ovarian function in the patients.
8.Effect of electroacupuncture on intestinal flora in COPD rats based on gut-lung axis theory.
Daohong CHEN ; Ying CHEN ; Wenchuan QI ; Qian ZENG ; Ziyang ZHOU ; Ziwen WANG ; Yongjiang FANG ; Shuguang YU ; Ling ZHAO
Chinese Acupuncture & Moxibustion 2025;45(7):967-981
OBJECTIVE:
To observe the effect of electroacupuncture (EA) on the intestinal flora in rats with chronic obstructive pulmonary disease (COPD) and explore its possible mechanism based on the gut-lung axis theory.
METHODS:
A total of 30 male SD rats of SPF grade were randomly divided into a normal control (NC) group, a model group and an EA group, 10 rats in each one. In the model group and the EA group, COPD model was established by intratracheal instillation of lipopolysaccharide combined with cigarette fumigation. In the EA group, EA was applied at bilateral "Feishu" (BL13) and "Zusanli" (ST36), with disperse-dense waves, in frequency of 4 Hz/20 Hz, current of 1-3 mA, 20 min a time, once a day for 14 days continuously. Before and after modeling, as well as after intervention, body weight was observed; after intervention, the lung function indexes (forced expiratory volume in 0.1 second [FEV0.1], FEV0.1/forced vital capacity [FVC]%, forced expiratory volume in 0.3 second [FEV0.3] and FEV0.3/FVC%) were measured, serum levels of inflammatory factors (tumor necrosis factor-α[TNF-α], interleukin-6[IL-6], interleukin-1β[IL-1β] and interleukin-10[IL-10]) were detected by ELISA, histopathology of lung and colon tissues was observed by HE staining, the intestinal flora were analyzed by 16S rRNA, and the correlations between lung function and intestinal flora were analyzed.
RESULTS:
Compared with the NC group, in the COPD group, the body weight and lung function indexes were reduced (P<0.01); the lung and colon tissues were damaged, the mean linear intercept (MLI) of alveolus and inflammatory cell numbers of 100 μm2 in lung tissue were increased (P<0.01); the serum levels of TNF-α, IL-6 and IL-1β were increased (P<0.01, P<0.05), and the serum level of IL-10 was decreased (P<0.01); α-diversity indexes of intestinal flora were increased (P<0.01); the relative abundance of Bacteroidetes, Proteobacteria and Oscillospira, Bacteroides, Coprococcus was increased (P<0.01), the relative abundance of Firmicutes, Actinobacteria, Tenericutes, TM7 and Lactobacillus, Allobaculum, Bifidobacterium, YRC22 was decreased (P<0.01, P<0.05); 31 different expressed metabolic pathways were identified between the two groups. Compared with the COPD group, in the EA group, the body weight and lung function indexes were increased (P<0.01); the damage of lung and colon tissues was improved, the MLI of alveolus was decreased (P<0.05); the serum levels of TNF-α, IL-6 and IL-1β were decreased (P<0.05), and the serum level of IL-10 was increased (P<0.05); α-diversity indexes of intestinal flora were decreased (P<0.01); the relative abundance of Bacteroidetes, Proteobacteria and Oscillospira, Bacteroides, Coprococcus was decreased (P<0.01, P<0.05), the relative abundance of Firmicutes, Actinobacteria, Tenericutes, TM7 and Lactobacillus, Allobaculum, Bifidobacterium, YRC22 was increased (P<0.01); 35 different expressed metabolic pathways were identified between the two groups. The lung function was positive related with Actinobacteria, Tenericutes, TM7 and YRC22, and was negative related with Bacteroidetes, Proteobacteria and Oscillospira, Bacteroides, Coprococcus.
CONCLUSION
EA may ameliorate lung function and tissue injury of COPD by regulating intestinal flora dysbiosis and inflammatory response, suggesting an anti-inflammatory effect mediated via "gut-lung" axis.
Animals
;
Pulmonary Disease, Chronic Obstructive/genetics*
;
Male
;
Electroacupuncture
;
Rats
;
Rats, Sprague-Dawley
;
Lung/metabolism*
;
Gastrointestinal Microbiome
;
Humans
;
Interleukin-6/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
;
Intestines/microbiology*
;
Interleukin-10/immunology*
9.Conserved translational control in cardiac hypertrophy revealed by ribosome profiling.
Bao-Sen WANG ; Jian LYU ; Hong-Chao ZHAN ; Yu FANG ; Qiu-Xiao GUO ; Jun-Mei WANG ; Jia-Jie LI ; An-Qi XU ; Xiao MA ; Ning-Ning GUO ; Hong LI ; Zhi-Hua WANG
Acta Physiologica Sinica 2025;77(5):757-774
A primary hallmark of pathological cardiac hypertrophy is excess protein synthesis due to enhanced translational activity. However, regulatory mechanisms at the translational level under cardiac stress remain poorly understood. Here we examined the translational regulations in a mouse cardiac hypertrophy model induced by transaortic constriction (TAC) and explored the conservative networks versus the translatome pattern in human dilated cardiomyopathy (DCM). The results showed that the heart weight to body weight ratio was significantly elevated, and the ejection fraction and fractional shortening significantly decreased 8 weeks after TAC. Puromycin incorporation assay showed that TAC significantly increased protein synthesis rate in the left ventricle. RNA-seq revealed 1,632 differentially expressed genes showing functional enrichment in pathways including extracellular matrix remodeling, metabolic processes, and signaling cascades associated with pathological cardiomyocyte growth. When combined with ribosome profiling analysis, we revealed that translation efficiency (TE) of 1,495 genes was enhanced, while the TE of 933 genes was inhibited following TAC. In DCM patients, 1,354 genes were upregulated versus 1,213 genes were downregulated at the translation level. Although the majority of the genes were not shared between mouse and human, we identified 93 genes, including Nos3, Kcnj8, Adcy4, Itpr1, Fasn, Scd1, etc., with highly conserved translational regulations. These genes were remarkably associated with myocardial function, signal transduction, and energy metabolism, particularly related to cGMP-PKG signaling and fatty acid metabolism. Motif analysis revealed enriched regulatory elements in the 5' untranslated regions (5'UTRs) of transcripts with differential TE, which exhibited strong cross-species sequence conservation. Our study revealed novel regulatory mechanisms at the translational level in cardiac hypertrophy and identified conserved translation-sensitive targets with potential applications to treat cardiac hypertrophy and heart failure in the clinic.
Animals
;
Humans
;
Cardiomegaly/physiopathology*
;
Ribosomes/physiology*
;
Protein Biosynthesis/physiology*
;
Mice
;
Cardiomyopathy, Dilated/genetics*
;
Ribosome Profiling
10.Banxia Xiexin Decoction suppresses malignant phenotypes of colon cancer cells via PARG/PARP1/NF-κB signaling pathway.
Yu-Qing HUANG ; Jia-Mei WANG ; Heng-Zhou LAI ; Chong XIAO ; Feng-Ming YOU ; Qi-Xuan KUANG ; Yi-Fang JIANG
China Journal of Chinese Materia Medica 2025;50(2):496-506
This study aims to delve into the influences and underlying mechanisms of Banxia Xiexin Decoction(BXD) on the proliferation, apoptosis, invasion, and migration of colon cancer cells. Firstly, the components of BXD in blood were identified by UPLC-MS/MS, and subsequently the content of these components were determined by HPLC. Then, different concentrations of BXD were used to treat both the normal intestinal epithelial cells(NCM460) and the colon cancer cells(HT29 and HCT116). The cell viability and apoptosis were examined by the cell counting kit-8(CCK-8) and flow cytometry, respectively. Western blot was employed to determine the expression of the apoptosis regulators B-cell lymphoma-2(Bcl-2) and Bcl-2-associated X(Bax). The cell wound healing assay and Transwell assay were employed to measure the cell migration and invasion, respectively. Additionally, Western blot was employed to determine the expression levels of epithelial-mesenchymal transition(EMT)-associated proteins, including epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), and vimentin. The protein and mRNA levels of the factors in the poly(ADP-ribose) glycohydrolase(PARG)/poly(ADP-ribose) polymerase 1(PARP1)/nuclear factor kappa-B p65(NF-κB p65) signaling pathway were determined by Western blot and RT-qPCR, respectively. The results demonstrated that following BXD intervention, the proliferation of HT29 and HCT116 cells was significantly reduced. Furthermore, BXD promoted the apoptosis, enhanced the expression of Bcl-2, and suppressed the expression of Bax in colon cancer cells. At the same time, BXD suppressed the cell migration and invasion and augmented the expression of E-cadherin while diminishing the expression of N-cadherin and vimentin. In addition, BXD down-regulated the protein and mRNA levels of PARG, PARP1, and NF-κB p65. In conclusion, BXD may inhibit the malignant phenotypes of colon cancer cells by mediating the PARG/PARP1/NF-κB signaling pathway.
Colonic Neoplasms/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Phenotype
;
Signal Transduction/drug effects*
;
Cell Proliferation/drug effects*
;
Apoptosis
;
Cell Movement/drug effects*
;
Neoplasm Invasiveness
;
HCT116 Cells
;
Proto-Oncogene Proteins c-bcl-2/biosynthesis*
;
Humans
;
Poly (ADP-Ribose) Polymerase-1
;
Glycoside Hydrolases
;
bcl-2-Associated X Protein
;
NF-kappa B p50 Subunit

Result Analysis
Print
Save
E-mail