1.PES1 Repression Triggers Ribosomal Biogenesis Impairment and Cellular Senescence Through p53 Pathway Activation
Chang-Jian ZHANG ; Yu-Fang LI ; Feng-Yun WU ; Rui JIN ; Chang NIU ; Qi-Nong YE ; Long CHENG
Progress in Biochemistry and Biophysics 2025;52(7):1853-1865
ObjectiveThe nucleolar protein PES1 (Pescadillo homolog 1) plays critical roles in ribosome biogenesis and cell cycle regulation, yet its involvement in cellular senescence remains poorly understood. This study aimed to comprehensively investigate the functional consequences of PES1 suppression in cellular senescence and elucidate the molecular mechanisms underlying its regulatory role. MethodsInitially, we assessed PES1 expression patterns in two distinct senescence models: replicative senescent mouse embryonic fibroblasts (MEFs) and doxorubicin-induced senescent human hepatocellular carcinoma HepG2 cells. Subsequently, PES1 expression was specifically downregulated using siRNA-mediated knockdown in these cell lines as well as additional relevant cell types. Cellular proliferation and senescence were assessed by EdU incorporation and SA-β-gal staining assays, respectively. The expression of senescence-associated proteins (p53, p21, and Rb) and SASP factors (IL-6, IL-1β, and IL-8) were analyzed by Western blot or qPCR. Furthermore, Northern blot and immunofluorescence were employed to evaluate pre-rRNA processing and nucleolar morphology. ResultsPES1 expression was significantly downregulated in senescent MEFs and HepG2 cells. PES1 knockdown resulted in decreased EdU-positive cells and increased SA‑β‑gal-positive cells, indicating proliferation inhibition and senescence induction. Mechanistically, PES1 suppression activated the p53-p21 pathway without affecting Rb expression, while upregulating IL-6, IL-1β, and IL-8 production. Notably, PES1 depletion impaired pre-rRNA maturation and induced nucleolar stress, as evidenced by aberrant nucleolar morphology. ConclusionOur findings demonstrate that PES1 deficiency triggers nucleolar stress and promotes p53-dependent (but Rb-independent) cellular senescence, highlighting its crucial role in maintaining nucleolar homeostasis and regulating senescence-associated pathways.
2.Exploring the risk "time interval window" of sequential medication of Reduning injection and penicillin G injection based on the correlation between biochemical indexes and metabolomics characteristics
Ming-liang ZHANG ; Yu-long CHEN ; Xiao-yan WANG ; Xiao-fei CHEN ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Wei-xia LI ; Jin-fa TANG
Acta Pharmaceutica Sinica 2024;59(7):2098-2107
Exploring the risk "time interval window" of sequential medication of Reduning injection (RDN) and penicillin G injection (PG) by detecting the correlation between serum biochemical indexes and plasma metabonomic characteristics, in order to reduce the risk of adverse reactions caused by the combination of RDN and PG. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). The changes of biochemical indexes in serum of rats were detected by enzyme-linked immunosorbent assay. It was determined that RDN combined with PG could cause pseudo-allergic reactions (PARs) activated by complement pathway. Further investigation was carried out at different time intervals (1.5, 2, 3.5, 4, 6, and 8 h PG+RDN). It was found that sequential administration within 3.5 h could cause significant PARs. However, PARs were significantly reduced after administration interval of more than 4 h. LC-MS was used for plasma metabolomics analysis, and the levels of serum biochemical indicators and plasma metabolic profile characteristics were compared in parallel. 22 differential metabolites showed similar or opposite trends to biochemical indicators before and after 3.5 h. And enriched to 10 PARs-related pathways such as arachidonic acid metabolism, steroid hormone biosynthesis, linoleic acid metabolism, glycerophospholipid metabolism, and tryptophan metabolism. In conclusion, there is a risk "time interval window" phenomenon in the adverse drug reactions caused by the sequential use of RDN and PG, and the interval medication after the "time interval window" can significantly reduce the risk of adverse reactions.
4.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and
5.Histone deacetylase inhibitor pracinostat suppresses colorectal cancer by inducing CDK5-Drp1 signaling-mediated peripheral mitofission
Xiao-Ling LIANG ; Lan OUYANG ; Nan-Nan YU ; Zheng-Hua SUN ; Zi-Kang GUI ; Yu-Long NIU ; Qing-Yu HE ; Jing ZHANG ; Yang WANG
Journal of Pharmaceutical Analysis 2023;13(10):1168-1182
Divisions at the periphery and midzone of mitochondria are two fission signatures that determine the fate of mitochondria and cells.Pharmacological induction of excessively asymmetric mitofission-associated cell death(MFAD)by switching the scission position from the mitochondrial midzone to the periphery represents a promising strategy for anticancer therapy.By screening a series of pan-inhibitors,we identified pracinostat,a pan-histone deacetylase(HDAC)inhibitor,as a novel MFAD inducer,that exhibited a significant anticancer effect on colorectal cancer(CRC)in vivo and in vitro.Pracinostat increased the expression of cyclin-dependent kinase 5(CDK5)and induced its acetylation at residue lysine 33,accelerating the formation of complex CDK5/CDK5 regulatory subunit 1 and dynamin-related protein 1(Drp1)-mediated mitochondrial peripheral fission.CRC cells with high level of CDK5(CDK5-high)displayed midzone mitochondrial division that was associated with oncogenic phenotype,but treatment with pracinostat led to a lethal increase in the already-elevated level of CDK5 in the CRC cells.Mechanistically,pracinostat switched the scission position from the mitochondrial midzone to the periphery by improving the binding of Drp1 from mitochondrial fission factor(MFF)to mitochondrial fission 1 protein(FIS1).Thus,our results revealed the anticancer mechanism of HDACi pracinostat in CRC via activating CDK5-Drp1 signaling to cause selective MFAD of those CDK5-high tumor cells,which implicates a new paradigm to develop potential therapeutic strategies for CRC treatment.
6.Study on the objectivity and biological mechanism of Psoralea corylifolia Linn.'s 'Great dryness damages the liver'
Ming-liang ZHANG ; Xu ZHAO ; Wei-xia LI ; Xiao-yan WANG ; Yu-long CHEN ; De-xin KONG ; Cheng-zhao WU ; Xiao-fei CHEN ; Zhao-fang BAI ; Ming NIU ; Jia-bo WANG ; Yan-ling ZHAO ; Xiao-he XIAO ; Jin-fa TANG
Acta Pharmaceutica Sinica 2023;58(4):1014-1023
According to the theory of 'Xingben Dazao'
7.Association between blood pressure during 12-28 weeks gestation and pre-eclampsia: predictive value of blood pressure trajectories constructed by latent class growth modeling.
Wei CAI ; Xin ZHOU ; Ning YANG ; Xiu Long NIU ; Guo Hong YANG ; Xin ZHANG ; Wei WANG ; Shao Bo CHEN ; Yu Ming LI
Chinese Journal of Cardiology 2023;51(2):164-171
Objective: To explore the associations between blood pressure trajectories during pregnancy and risk of future pre-eclampsia in a large cohort enrolling pregnant women at gestational age of ~12 weeks from community hospitals in Tianjin. Latent class growth modeling (LCGM) was used to model the blood pressure trajectories. Methods: This was a large prospective cohort study. The study enrolled pregnant women of ~12 weeks of gestation in 19 community hospitals in Tianjin from November 1, 2016 to May 30, 2018. We obtained related information during 5 antepartum examinations before gestational week 28, i.e., week 12, week 16, week 20, week 24 and week 28. LCGM was used to model longitudinal systolic (SBP) and diastolic blood pressure (DBP) trajectories. For the association study, the predictors were set as SBP and DBP trajectory membership (built separately), the outcome was defined as the occurrence of preeclampsia after 28 weeks of gestation. Results: A total of 5 809 cases with known pregnant outcomes were documented. After excluding 249 cases per exclusion criteria, 5 560 cases with singleton pregnancy were included for final analysis. There were 128 cases preeclampsia and 106 cases gestational hypertension in this cohort. Univariate logistic regression and multivariate logistic regression showed the higher baseline SBP level and DBP level were related with increased risk of preeclampsia. Four distinctive SBP trajectories and DBP trajectories from 12 weeks to 28 weeks of gestation were identified by LCGM. After controlling for potential confounders (baseline BMI, being primipara or not, white blood cell counts, hemoglobin level, platelet counts and alanine aminotransferase level), the OR for SBP latent classification trajectory_ 4 was 4.023 (95%CI: 2.368 to 6.835, P<0.001), and the OR for SBP latent classification trajectory_3 was 1.854 (95%CI: 1.223 to 2.811, P=0.004). Logistic regression showed that: using the DBP latent classification trajectory_1 as the reference group, the OR for DBP latent classification trajectory_4 was 4.100 (95%CI: 2.571 to 6.538, P<0.001), and 2.632 (95%CI: 1.570 to 4.414, P<0.001) for DBP latent classification trajectory_2. After controlling for potential confounders (baseline BMI, being primipara or not, white blood cell counts, hemoglobin level, platelet counts and alanine aminotransferase level), the OR for DBP_traj_4 was 2.527 (95%CI: 1.534 to 4.162, P<0.001), and the OR for DBP_traj_3 was 1.297 (95%CI: 0.790 to 2.128, P=0.303), and 2.238 (95%CI: 1.328 to 3.772, P=0.002) for DBP_traj_2. Therefore, BP trajectories from 12 weeks to 28 weeks identified by LCGM served as novel risk factors that independently associated with the occurrence of preeclampsia. Receiver operating characteristic (ROC) curve analysis showed incremental diagnostic performance by combing baseline blood pressure levels with blood pressure trajectories. Conclusion: By applying LCGM, we for the first time identified distinctive BP trajectories from gestational week 12 to 28, which can independently predict the development of preeclampsia after 28 weeks of gestation.
Female
;
Humans
;
Pregnancy
;
Infant
;
Blood Pressure
;
Pre-Eclampsia/diagnosis*
;
Prospective Studies
;
Gestational Age
;
Alanine Transaminase
;
Hemoglobins
8.Correlation Between Functional Components in Codonopsis pilosula Roots and Soil Factors
Tian-zeng NIU ; Yu-long WANG ; Qin-wen HOU ; Shu-xian XIAO ; Hong-mei LUO ; A-ke LIU
Chinese Journal of Experimental Traditional Medical Formulae 2022;28(11):164-172
ObjectiveTo explore the correlation between the content of 4 functional components in Codonopsis pilosula roots from different areas and soil factors, and thereby to lay a theoretical basis for soil ecological regulation and improvement of quality of C. pilosula roots. MethodThe content of lobetyolin, atractylenolide Ⅲ, alcohol extract, and polysaccharides, as well as soil fertility and 16 soil factors in 24 batches of samples from different producing areas were determined. Principal component analysis (PCA) and Pearson's correlation analysis were used to explore the key soil factors leading to the variation of chemical component content in C. pilosula roots. ResultThe content of lobetyolin and atractylenolide Ⅲ in samples from Longxi was the highest, and the content of polysaccharides peaked in samples from Huguan. The content of lobetyolin was in positive correlation with soil total nitrogen, total phosphorus, total potassium, alkali-hydrolyzable nitrogen, and available potassium (P<0.01), as well as soil organic matter, pH, available manganese, and available zinc (P<0.05). There was a positive correlation between pH and atractylenolide Ⅲ content (P<0.05). Soil total potassium was in positive correlation with alcohol extract and polysaccharide content (P<0.01). Soil available zinc was positively correlated with alcohol extract and the polysaccharide content (P<0.05). Sample sites with higher PCA scores were Pingshun, Huguan, and Longxi, which were significantly positively correlated with the content of polysaccharides in C. pilosula roots in different habitats. ConclusionThe content of functional components in C. pilosula roots can be improved by raising soil organic matter content and applying specific fertilizers.
9.Status of HVPG clinical application in China in 2021
Wen ZHANG ; Fuquan LIU ; Linpeng ZHANG ; Huiguo DING ; Yuzheng ZHUGE ; Jitao WANG ; Lei LI ; Guangchuan WANG ; Hao WU ; Hui LI ; Guohong CAO ; Xuefeng LU ; Derun KONG ; Lin SUN ; Wei WU ; Junhui SUN ; Jiangtao LIU ; He ZHU ; Dongliang LI ; Wuhua GUO ; Hui XUE ; Yu WANG ; Jiancuo GENGZANG ; Tian ZHAO ; Min YUAN ; Shirong LIU ; Hui HUAN ; Meng NIU ; Xin LI ; Jun MA ; Qingliang ZHU ; Wenbo GUO ; Kunpeng ZHANG ; Xiaoliang ZHU ; Birun HUANG ; Jianan LI ; Weidong WANG ; Hongfeng YI ; Qi ZHANG ; Long GAO ; Guo ZHANG ; Zhongwei ZHAO ; Kai XIONG ; Zexin WANG ; Hong SHAN ; Mingsheng LI ; Xueqiang ZHANG ; Haibin SHI ; Xiaogang HU ; Kangshun ZHU ; Zhanguo ZHANG ; Hong JIANG ; Jianbo ZHAO ; Mingsheng HUANG ; Wenyong SHEN ; Lin ZHANG ; Feng XIE ; Zhiwei LI ; Changlong HOU ; Shengjuan HU ; Jianwei LU ; Xudong CUI ; Ting LU ; Shaoqi YANG ; Wei LIU ; Junping SHI ; Yanming LEI ; Jinlun BAO ; Tao WANG ; Weixin REN ; Xiaoli ZHU ; Yong WANG ; Lei YU ; Qiang YU ; Huiling XIANG ; Wenqiang LUO ; Xiaolong QI
Chinese Journal of Hepatology 2022;30(6):637-643
Objective:The investigation and research on the application status of Hepatic Venous Pressure Gradient (HVPG) is very important to understand the real situation and future development of this technology in China.Methods:This study comprehensively investigated the basic situation of HVPG technology in China, including hospital distribution, hospital level, annual number of cases, catheters used, average cost, indications and existing problems.Results:According to the survey, there were 70 hospitals in China carrying out HVPG technology in 2021, distributed in 28 provinces (autonomous regions and municipalities directly under the central Government). A total of 4 398 cases of HVPG were performed in all the surveyed hospitals in 2021, of which 2 291 cases (52.1%) were tested by HVPG alone. The average cost of HVPG detection was (5 617.2±2 079.4) yuan. 96.3% of the teams completed HVPG detection with balloon method, and most of the teams used thrombectomy balloon catheter (80.3%).Conclusion:Through this investigation, the status of domestic clinical application of HVPG has been clarified, and it has been confirmed that many domestic medical institutions have mastered this technology, but it still needs to continue to promote and popularize HVPG technology in the future.
10. Epithelial Cell Adhesion Molecules (EpCAMs) Promote Drug Resistance in Breast Cancer Cells by Enhancing Tight Junctions
Ya-Nan NIU ; Yu GAO ; Yi-Fan HE ; Ke-Min LI ; Xuan-Ping ZHANG ; Rui-Zan SHI ; Rui-Han LI ; Wen-Long ZHANG
Chinese Journal of Biochemistry and Molecular Biology 2022;38(6):809-815
Breast cancer is a malignant tumor with high mortality, and multidrug resistance (MDR) mediated by ABCG2 (ATP-Binding cassette G2) is an important cause of chemotherapy failure. It is an urgent problem to explore the mechanism of ABCG2-mediated drug resistance and its key molecules. Epithelial cell adhesion molecule (EpCAM) is involved in multiple tumor drug resistance and is closely related to breast cancer MDR. However, its role in ABCG2-mediated breast cancer drug resistance has not been clarified. The purpose of this study was to explore the regulation of EpCAM on ABCG2-mediated MDR in breast cancer cells and its mechanism. CCK8 cytotoxicity assays confirmed that the drug resistance of MCF-7/MX cell line to mitoxantrone (MX) was significantly increased compared with MCF-7 drug-sensitive strain of human breast cancer. Western blotting results showed that ABCG2 was highly expressed and EpCAM was up-regulated in MCF-7/MX cells compared with MCF-7. SiRNA knockdown of EpCAM in MCF-7/MX cells down-regulated ABCG2 expression and restored sensitivity to MX. Cell morphology was observed under an inverted microscope, and it was found that knocking down EpCAM reduced cell-cell connections between MCF-7/MX cells. The co-localization of EpCAM and claudin 1 in MCF-7/MX cells was observed by immunofluorescence. Furthermore, Western blotting results showed that EpCAM knockdown reduced claudin 1 expression in MCF-7/MX cells. In conclusion, EpCAM may promote ABCG2-mediated mMDR in breast cancers by enhancing intercellular tight junctions through interaction with claudin 1.

Result Analysis
Print
Save
E-mail