1.Optimization of Ovarian Tissue Vitrification Using Hydrogel Encapsulation and Magnetic Induction Nanowarming
Yu-Kun CAO ; Na YE ; Zheng LI ; Xin-Li ZHOU
Progress in Biochemistry and Biophysics 2025;52(2):464-477
ObjectiveFor prepubertal and urgently treated malignant tumor patients, ovarian tissue cryopreservation and transplantation represent more appropriate fertility preservation methods. Current clinical practices often involve freezing ovarian tissue with high concentrations of cryoprotectants (CPAs) and thawing with water baths. These processes lead to varying degrees of toxicity and devitrification damage to ovarian tissue. Therefore, this paper proposes optimized methods for vitrification of ovarian tissues based on sodium alginate hydrogel encapsulation and magnetic induction nanowarming technology. MethodsFirstly, the study investigated the effects of sodium alginate concentration, the sequence of hydrogel encapsulation and CPAs loading on vitrification efficiency of encapsulated ovarian tissue. Additionally, the capability of sodium alginate hydrogel encapsulation to reduce the required concentration of CPAs was validated. Secondly, a platform combining water bath and magnetic induction nanowarming was established to rewarm ovarian tissue under various concentrations of magnetic nanoparticles and magnetic field strengths. The post-warming follicle survival rate, antioxidant capacity, and ovarian tissue integrity were evaluated to assess the efficacy of the method. ResultsThe study found that ovarian tissue encapsulated with 2% sodium alginate hydrogel exhibited the highest follicle survival rate after vitrification. The method of loading CPAs prior to encapsulation proved more suitable for ovarian tissue cryopreservation, effectively reducing the required concentration of CPAs by 50%. A combination of 8 g/L Fe3O4 nanoparticles and an alternating magnetic field of 300 Gs showed optimal warming effectiveness for ovarian tissue. Combining water bath rewarming with magnetic induction nanowarming yielded the highest follicle survival rate, enhanced antioxidant capacity, and preserved tissue morphology. ConclusionSodium alginate hydrogel encapsulation of ovarian tissue reduces the concentration of CPAs required during the freezing process. The combination of magnetic induction nanowarming with water bath provides an efficient method ovarian tissue rewarming. This study offers novel approaches to optimize ovarian tissues vitrification.
2.Tissue-resident peripheral helper T cells foster hepatocellular carcinoma immune evasion by promoting regulatory B-cell expansion.
Haoyuan YU ; Mengchen SHI ; Xuejiao LI ; Zhixing LIANG ; Kun LI ; Yongwei HU ; Siqi LI ; Mingshen ZHANG ; Yang YANG ; Yang LI ; Linsen YE
Chinese Medical Journal 2025;138(17):2148-2158
BACKGROUND:
Peripheral helper T (T PH ) cells are uniquely positioned within pathologically inflamed non-lymphoid tissues to stimulate B-cell responses and antibody production. However, the phenotype, function, and clinical relevance of T PH cells in hepatocellular carcinoma (HCC) are currently unknown.
METHODS:
Blood, tumor, and peritumoral liver tissue samples from 39 HCC patients (Sep 2016-Aug 2017) and 101 HCC patients (Sep 2011-Dec 2012) at the Third Affiliated Hospital of Sun Yat-sen University were used. Flow cytometry was used to quantify the expression, phenotype, and function of T PH cells. Log-rank tests were performed to evaluate disease-free survival and overall survival in samples from 39 patients and 101 patients with HCC. T PH cells, CD19 + B cells, and T follicular helper (T FH ) cells were cultured separately in vitro or isolated from C57/B6L mice in vivo for functional assays.
RESULTS:
T PH cells highly infiltrated tumor tissues, which was correlated with tumor size, early recurrence, and shorter survival time. The tumor-infiltrated T PH cells showed a unique ICOS hi CXCL13 + IL-21 - MAF + BCL-6 - phenotype and triggered naïve B-cell differentiation into regulatory B cells. Triggering programmed cell death protein 1 (PD-1) induced the production of C-X-C motif chemokine ligand 13 (CXCL13) by T PH cells, which then suppressed tumor-specific immunity and promoted disease progression.
CONCLUSION
Our study reveals a novel regulatory mechanism of T PH cell-regulatory B-cell-mediated immunosuppression and provides an important perspective for determining the balance between the differentiation of protumorigenic T PH cells and that of antitumorigenic T FH cells in the HCC microenvironment.
Carcinoma, Hepatocellular/metabolism*
;
Liver Neoplasms/metabolism*
;
Humans
;
T-Lymphocytes, Helper-Inducer/metabolism*
;
Animals
;
Mice
;
Male
;
Female
;
Mice, Inbred C57BL
;
Middle Aged
;
B-Lymphocytes, Regulatory/metabolism*
;
Flow Cytometry
;
Interleukin-21
;
Aged
;
Chemokine CXCL13/metabolism*
3.Study on the effect of postoperative implant fusion after anterior cervical discectomy and fusion by applying nano-hydroxyapatite/collagen composite in patients with low bone mass cervical spondylosis.
Shi-Bo ZHOU ; Xing YU ; Ning-Ning FENG ; Zi-Ye QIU ; Yu-Kun MA ; Yang XIONG
China Journal of Orthopaedics and Traumatology 2025;38(8):800-809
OBJECTIVE:
To explore the effect of nano-hydroxyapatite/collagen composite (nHAC) on bone graft fusion after anterior cervical discectomy and fusion (ACDF) in patients with cervical spondylosis and low bone mass.
METHODS:
A retrospective analysis was conducted on 47 patients with low bone mass who underwent ACDF from 2017 to 2021. They were divided into the nHAC group and the allogeneic bone group according to different bone graft materials. The nHAC group included 26 cases, with 8 males and 18 females;aged 50 to 78 years old with an average of (62.81±7.79) years old;the CT value of C2-C7 vertebrae was (264.16±36.33) HU. The allogeneic bone group included 21 cases, with 9 males and 12 females;aged 54 to 75 years old with an average of (65.95±6.58) years old;the CT value of C2-C7 vertebrae was (272.39±40.44) HU. The visual analogue scale (VAS), neck disability index (NDI), and Japanese Orthopaedic Association (JOA) spinal cord function score were compared before surgery, 1 week after surgery, and at the last follow-up to evaluate the clinical efficacy. Imaging assessment included C2-C7 Cobb angle, surgical segment height, intervertebral fusion, and whether the cage subsidence occurred at 1 week after surgery and the last follow-up.
RESULTS:
The follow-up duration ranged from 26 to 39 months with an average of (33.27±3.34) months in the nHAC group and 26 to 41 months with an average of (31.86±3.57) months in the allogeneic bone group. At 1 week after surgery and the last follow-up, the VAS, NDI scores, and JOA scores in both groups were significantly improved compared with those before surgery, with statistically significant differences (P<0.05). At 1 week after surgery, the C2-C7 Cobb angles in the nHAC group and the allogeneic bone group were (14.26±10.32)° and (14.28±8.20)° respectively, which were significantly different from those before surgery (P<0.05). At the last follow-up, the C2-C7 Cobb angles in both groups were smaller than those at 1 week after surgery, with statistically significant differences (P<0.05). At 1 week after surgery, the height of the surgical segment in the nHAC group was (31.65±2.55) mm, and that in the allogeneic bone group was (33.63±3.26) mm, which were significantly different from those before surgery (P<0.05). At the last follow-up, the height of the surgical segment in both groups decreased compared with that at 1 week after surgery, with statistically significant differences (P<0.05). At the last follow-up, 39 surgical segments were fused and 6 cages subsided in the nHAC group;40 surgical segments were fused and 7 cages subsided in the allogeneic bone group;there was no statistically significant difference between the two groups (P>0.05). Compared with the CT value of vertebrae without cage subsidence, the CT value of vertebrae with cage subsidence in both groups was significantly lower, with a statistically significant difference (P<0.05).
CONCLUSION
The application of nHAC in ACDF for patients with low bone mass can achieve effective fusion of the surgical segment. There is no significant difference in improving clinical efficacy, intervertebral fusion, and cage subsidence compared with the allogeneic bone group. With the extension of follow-up time, the C2-C7 Cobb angle decreases, the height of the surgical segment is lost, and the cage subsides in both the nHAC group and the allogeneic bone group, which may be related to low bone mass. Low bone mass may be one of the risk factors for cervical spine sequence changes, surgical segment height loss, and cage subsidence after ACDF.
Humans
;
Male
;
Female
;
Middle Aged
;
Spondylosis/physiopathology*
;
Spinal Fusion/methods*
;
Cervical Vertebrae/surgery*
;
Aged
;
Diskectomy
;
Durapatite
;
Retrospective Studies
;
Collagen/chemistry*
4.Ursodeoxycholic acid inhibits the uptake of cystine through SLC7A11 and impairs de novo synthesis of glutathione.
Fu'an XIE ; Yujia NIU ; Xiaobing CHEN ; Xu KONG ; Guangting YAN ; Aobo ZHUANG ; Xi LI ; Lanlan LIAN ; Dongmei QIN ; Quan ZHANG ; Ruyi ZHANG ; Kunrong YANG ; Xiaogang XIA ; Kun CHEN ; Mengmeng XIAO ; Chunkang YANG ; Ting WU ; Ye SHEN ; Chundong YU ; Chenghua LUO ; Shu-Hai LIN ; Wengang LI
Journal of Pharmaceutical Analysis 2025;15(1):101068-101068
Ursodeoxycholic acid (UDCA) is a naturally occurring, low-toxicity, and hydrophilic bile acid (BA) in the human body that is converted by intestinal flora using primary BA. Solute carrier family 7 member 11 (SLC7A11) functions to uptake extracellular cystine in exchange for glutamate, and is highly expressed in a variety of human cancers. Retroperitoneal liposarcoma (RLPS) refers to liposarcoma originating from the retroperitoneal area. Lipidomics analysis revealed that UDCA was one of the most significantly downregulated metabolites in sera of RLPS patients compared with healthy subjects. The augmentation of UDCA concentration (≥25 μg/mL) demonstrated a suppressive effect on the proliferation of liposarcoma cells. [15N2]-cystine and [13C5]-glutamine isotope tracing revealed that UDCA impairs cystine uptake and glutathione (GSH) synthesis. Mechanistically, UDCA binds to the cystine transporter SLC7A11 to inhibit cystine uptake and impair GSH de novo synthesis, leading to reactive oxygen species (ROS) accumulation and mitochondrial oxidative damage. Furthermore, UDCA can promote the anti-cancer effects of ferroptosis inducers (Erastin, RSL3), the murine double minute 2 (MDM2) inhibitors (Nutlin 3a, RG7112), cyclin dependent kinase 4 (CDK4) inhibitor (Abemaciclib), and glutaminase inhibitor (CB839). Together, UDCA functions as a cystine exchange factor that binds to SLC7A11 for antitumor activity, and SLC7A11 is not only a new transporter for BA but also a clinically applicable target for UDCA. More importantly, in combination with other antitumor chemotherapy or physiotherapy treatments, UDCA may provide effective and promising treatment strategies for RLPS or other types of tumors in a ROS-dependent manner.
5.The material basis and mechanism of action of anti-inflammatory effects of simplified Zhiqin Decoction
Kun WANG ; Yang LIU ; Yue YIN ; Xiao XIAO ; Xue-jiao ZHOU ; Zhi-ying YUAN ; Liang-hong YE ; Xiao-yu XU
Acta Pharmaceutica Sinica 2024;59(8):2245-2254
The anti-inflammatory effect of simplified Zhiqin Decoction was observed by using lipopolysaccharide (LPS)-induced inflammation mouse model. The main chemical constituents and the main mechanism of action of simplified Zhiqin Decoction were predicted by network pharmacology. Animal experiments verified the anti-inflammatory mechanism of simplified Zhiqin Decoction (this experiment was approved by the Animal Experiment Ethics Committee of Southwest University, approval number: IACUC-20210825-02). Simplifying Zhiqin Decoction has a significant anti-inflammatory effect on inflammatory mice, can significantly improve the overall macro shape of mice, reduce body temperature, water intake, increase the number of autonomous activities; alleviate liver, lung, spleen, thymus inflammation and pathological damage; decrease tumor necrosis factor-
6.Effects of GanoExtra combined with CTX on lung metastasis and immune function in mice
Shu LIAN ; Ting-Jian WU ; Jie CHEN ; Chun-Lian ZHONG ; Yu-Sheng LU ; Ye LI ; Chang-Hui WU ; Kun ZHANG ; Li JIA ; Xiao-Dong XIE
Chinese Pharmacological Bulletin 2024;40(7):1335-1342
Aim To investigate the enhanced efficacy and reduced toxicity of GanoExtra in combination with cyclophosphamide(CTX)on inhibiting lung metastasis and immune function in mice.Methods The CCK-8 method was used to verify the cytotoxic effects of Gano-Extra on MCF-7 and 4T1 tumor cells.In vivo experi-ment,a mouse model of lung metastasis of breast canc-er was established by injecting 4T1 tumor cells into the tail vein,which was divided into four groups including 4T1 model group,CTX group,GanoExtra group and GanoExtra+CTX group.The control group was set.After 21 days,the mice were euthanized under anes-thesia,and the body weight of the mice was recorded.Average lung index and spleen index were calculated.The mouse spleen lymphocyte transformation experi-ment was used to determine the activity of spleen cells.The NK cell activity assay was used to determine the activity of NK cells.Blood cells were determined in mouse blood samples.Flow cytometry was used to de-termine the levels of CD4+and CD8+T cells in blood samples.ELISA was used to measure the levels of TNF-α and IL-6 in serum.HE staining was used to ob-serve the pathological morphological changes in tumors and various tissues;and CFSE staining was used to de-termine the proliferative effect of GanoExtra on CD8+cells.Results In vitro GanoExtra at 50 mg·L-1 sig-nificantly inhibited the activity of MCF-7 and 4T1 tumor cells.In the breast cancer pulmonary metastasis model,compared with the model group,the spleen in-dex and blood WBCs content were significantly re-duced,while the activity of NK cells,spleen cells,and the proportion of RBCs,CD 3+and CD 8+T cells in the blood were significantly increased.At the end of the treatment,compared with the CTX group,the number of lung metastases and lung index of the Gano-Extra+CTX group were significantly reduced,and the levels of HGB,CD8+cells,IL-6,and TNF-α in the blood of mice were significantly increased.GanoExtra at 10 mg·L-1 significantly promoted the proliferation of CD8+T cells in vitro.Conclusions GanoExtra can enhance the inhibitory effect of CTX on tumor metasta-sis,alleviate adverse reactions such as splenomegaly and pulmonary enlargement caused by CTX,and have a health-promoting function of promoting the prolifera-tion of CD8+T cells to enhance the immune efficacy of the body.
7.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
8.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
9.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
10.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.

Result Analysis
Print
Save
E-mail