1.Material basis of toad oil and its pharmacodynamic effect in a mouse model of atopic dermatitis.
Yu-Yang LIU ; Xin-Wei YAN ; Bao-Lin BIAN ; Yao-Hua DING ; Xiao-Lu WEI ; Meng-Yao TIAN ; Wei WANG ; Hai-Yu ZHAO ; Yan-Yan ZHOU ; Hong-Jie WANG ; Ying YANG ; Nan SI
China Journal of Chinese Materia Medica 2025;50(1):165-177
This study aims to comprehensively analyze the material basis of toad visceral oil(hereafter referred to as toad oil), and explore the pharmacological effect of toad oil on atopic dermatitis(AD). Ultra-high performance liquid chromatography-linear ion trap/orbitrap high-resolution mass spectrometry(UHPLC-LTQ-Orbitrap-MS) and gas chromatography-mass spectrometry(GC-MS) were employed to comprehensively identify the chemical components in toad oil. The animal model of AD was prepared by the hapten stimulation method. The modeled animals were respectively administrated with positive drug(0.1% hydrocortisone butyrate cream) and low-and high-doses(1%, 10%) of toad oil by gavage. The effect of toad oil on AD was evaluated with the AD score, ear swelling rate, spleen index, and pathological section results as indicators. A total of 99 components were identified by UHPLC-LTQ-Orbitrap-MS, including 14 bufadienolides, 7 fatty acids, 6 alkaloids, 10 ketones, 18 amides, and other compounds. After methylation of toad oil samples, a total of 20 compounds were identified by GC-MS. Compared with the model group, the low-and high-dose toad oil groups showed declined AD score, ear swelling rate, and spleen index, alleviated skin lesions, and reduced infiltrating mast cells. This study comprehensively analyzes the chemical composition and clarifies the material basis of toad oil. Meanwhile, this study proves that toad oil has a good therapeutic effect on AD and is a reserve resource of traditional Chinese medicine for external use in the treatment of AD.
Animals
;
Dermatitis, Atopic/immunology*
;
Disease Models, Animal
;
Mice
;
Male
;
Gas Chromatography-Mass Spectrometry
;
Humans
;
Bufonidae
;
Oils/administration & dosage*
;
Chromatography, High Pressure Liquid
;
Female
;
Mice, Inbred BALB C
2.Tetrahydropalmatine acts on α7nAChR to regulate inflammation and polarization of BV2 microglia.
Yan-Jun WANG ; Guo-Liang DAI ; Pei-Yao CHEN ; Hua-Xi HANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(11):3117-3126
Based on the α7 nicotinic acetylcholine receptor(α7nAChR), this study examined how tetrahydropalmatine(THP) affected BV2 microglia exposed to lipopolysaccharide(LPS), aiming to clarify the possible mechanism underlying the anti-depression effect of THP from the perspectives of preventing inflammation and regulating polarization. First, after molecular docking and determination of the content of Corydalis saxicola Bunting total alkaloids, THP was initially identified as a possible anti-depression component. The BV2 microglia model of inflammation was established with LPS. BV2 microglia were allocated into a normal group, a model group, low-and high-dose(20 and 40 μmol·L~(-1), respectively) THP groups, and a THP(20 μmol·L~(-1))+α7nAChR-specific antagonist MLA(1 μmol·L~(-1)) group. The CCK-8 assay was used to screen the safe concentration of THP. A light microscope was used to examine the morphology of the cells. Western blot and immunofluorescence were used to determine the expression of α7nAChR. qRT-PCR was performed to determine the mRNA levels of inducible nitric oxide synthase(iNOS), cluster of differentiation 86(CD86), suppressor of cytokine signaling 3(SOCS3), arginase-1(Arg-1), cluster of differentiation 206(CD206), tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1β. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. The experimental results showed that THP at concentrations of 40 μmol·L~(-1) and below had no effect on BV2 microglia. THP improved the morphology of BV2 microglia, significantly up-regulated the protein level of α7nAChR, significantly down-regulated the mRNA levels of iNOS, CD86, SOCS3, TNF-α, IL-6, and IL-1β, significantly up-regulated the mRNA levels of Arg-1 and CD206, and dramatically lowered the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. However, the antagonist MLA abolished the above-mentioned ameliorative effects of THP on LPS-treated BV2 microglia. As demonstrated by the aforementioned findings, THP protected LPS-treated BV2 microglia by regulating the M1/M2 polarization and preventing inflammation, which might be connected to the regulation of α7nAChR on BV2 microglia.
Berberine Alkaloids/chemistry*
;
alpha7 Nicotinic Acetylcholine Receptor/chemistry*
;
Microglia/metabolism*
;
Mice
;
Animals
;
Cell Line
;
Corydalis/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Inflammation/drug therapy*
;
Nitric Oxide Synthase Type II/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
3.Prognostic value of quantitative flow ratio measured immediately after percutaneous coronary intervention for chronic total occlusion.
Zheng QIAO ; Zhang-Yu LIN ; Qian-Qian LIU ; Rui ZHANG ; Chang-Dong GUAN ; Sheng YUAN ; Tong-Qiang ZOU ; Xiao-Hui BIAN ; Li-Hua XIE ; Cheng-Gang ZHU ; Hao-Yu WANG ; Guo-Feng GAO ; Ke-Fei DOU
Journal of Geriatric Cardiology 2025;22(4):433-442
BACKGROUND:
The clinical impact of post-percutaneous coronary intervention (PCI) quantitative flow ratio (QFR) in patients treated with PCI for chronic total occlusion (CTO) was still undetermined.
METHODS:
All CTO vessels treated with successful anatomical PCI in patients from PANDA III trial were retrospectively measured for post-PCI QFR. The primary outcome was 2-year vessel-oriented composite endpoints (VOCEs, composite of target vessel-related cardiac death, target vessel-related myocardial infarction, and ischemia-driven target vessel revascularization). Receiver operator characteristic curve analysis was conducted to identify optimal cutoff value of post-PCI QFR for predicting the 2-year VOCEs, and all vessels were stratified by this optimal cutoff value. Cox proportional hazards models were employed to calculate the hazard ratio (HR) with 95% CI.
RESULTS:
Among 428 CTO vessels treated with PCI, 353 vessels (82.5%) were analyzable for post-PCI QFR. 31 VOCEs (8.7%) occurred at 2 years. Mean value of post-PCI QFR was 0.92 ± 0.13. Receiver operator characteristic curve analysis shown the optimal cutoff value of post-PCI QFR for predicting 2-year VOCEs was 0.91. The incidence of 2-year VOCEs in the vessel with post-PCI QFR < 0.91 (n = 91) was significantly higher compared with the vessels with post-PCI QFR ≥ 0.91 (n = 262) (22.0% vs. 4.2%, HR = 4.98, 95% CI: 2.32-10.70).
CONCLUSIONS
Higher post-PCI QFR values were associated with improved prognosis in the PCI practice for coronary CTO. Achieving functionally optimal PCI results (post-PCI QFR value ≥ 0.91) tends to get better prognosis for patients with CTO lesions.
4.International clinical practice guideline on the use of traditional Chinese medicine for functional dyspepsia (2025).
Sheng-Sheng ZHANG ; Lu-Qing ZHAO ; Xiao-Hua HOU ; Zhao-Xiang BIAN ; Jian-Hua ZHENG ; Hai-He TIAN ; Guan-Hu YANG ; Won-Sook HONG ; Yu-Ying HE ; Li LIU ; Hong SHEN ; Yan-Ping LI ; Sheng XIE ; Jin SHU ; Bin-Fang ZENG ; Jun-Xiang LI ; Zhen LIU ; Zheng-Hua XIAO ; Jing-Dong XIAO ; Pei-Yong ZHENG ; Shao-Gang HUANG ; Sheng-Liang CHEN ; Gui-Jun FEI
Journal of Integrative Medicine 2025;23(5):502-518
Functional dyspepsia (FD), characterized by persistent or recurrent dyspeptic symptoms without identifiable organic, systemic or metabolic causes, is an increasingly recognized global health issue. The objective of this guideline is to equip clinicians and nursing professionals with evidence-based strategies for the management and treatment of adult patients with FD using traditional Chinese medicine (TCM). The Guideline Development Group consulted existing TCM consensus documents on FD and convened a panel of 35 clinicians to generate initial clinical queries. To address these queries, a systematic literature search was conducted across PubMed, EMBASE, the Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP Database, China Biology Medicine (SinoMed) Database, Wanfang Database, Traditional Medicine Research Data Expanded (TMRDE), and the Traditional Chinese Medical Literature Analysis and Retrieval System (TCMLARS). The evidence from the literature was critically appraised using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. The strength of the recommendations was ascertained through a consensus-building process involving TCM and allopathic medicine experts, methodologists, pharmacologists, nursing specialists, and health economists, leveraging their collective expertise and empirical knowledge. The guideline comprises a total of 43 evidence-informed recommendations that span a range of clinical aspects, including the pathogenesis according to TCM, diagnostic approaches, therapeutic interventions, efficacy assessments, and prognostic considerations. Please cite this article as: Zhang SS, Zhao LQ, Hou XH, Bian ZX, Zheng JH, Tian HH, Yang GH, Hong WS, He YY, Liu L, Shen H, Li YP, Xie S, Shu J, Zeng BF, Li JX, Liu Z, Xiao ZH, Xiao JD, Zheng PY, Huang SG, Chen SL, Fei GJ. International clinical practice guideline on the use of traditional Chinese medicine for functional dyspepsia (2025). J Integr Med. 2025; 23(5):502-518.
Dyspepsia/drug therapy*
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Practice Guidelines as Topic
;
Drugs, Chinese Herbal/therapeutic use*
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
6.Clinical Observation on Acupuncture Combined with Shenqi Huoxue Decoction in the Treatment of Adenomyosis of Qi Deficiency and Blood Stasis Type
Tian-Si WU ; Chun-Min ZHANG ; Xiao-Hua LIN ; Yu-Xuan QIN ; Wen-Hui BIAN ; Feng YUN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(6):1537-1542
Objective To observe the clinical effect of acupuncture combined with Shenqi Huoxue Decoction in the treatment of adenomyosis of qi deficiency and blood stasis type.Methods Seventy patients with adenomyosis of qi deficiency and blood stasis type were randomly divided into observation group and control group,35 cases in each group.The control group was treated with Levonorgestrel-releasing intrauterine system,and the observation group was treated with acupuncture combined with Shenqi Huoxue Decoction on the basis of the treatment of the control group.One menstrual cycle was a course of treatment,and the treatment lasted for three courses.After 3 months of treatment,the clinical efficacy of the two groups was evaluated,and the changes of Endometriosis Health Profile-5(EHP-5)score,serum superoxide dismutase(SOD)and catalase(CAT)were observed in the two groups before and after treatment.The changes of serum carbohydrate antigen CA125,carbohydrate antigen 199(CA199)and human epididymis protein 4(HE4)levels were compared before and after treatment between the two groups.Results(1)The total effective rate was 97.14%(34/35)in the observation group and 77.14%(27/35)in the control group.The clinical efficacy of the observation group was superior to that of the control group,and the difference was statistically significant(P<0.05).(2)After treatment,the levels of serum CA125,CA199 and HE4 in the two groups were significantly improved(P<0.05),and the improvement of serum CA1 25,CA199 and HE4 levels in the observation group was significantly superior to that in the control group,the difference was statistically significant(P<0.05).(3)After treatment,the levels of serum SOD and CAT in the two groups were significantly improved(P<0.05),and the improvement of serum SOD and CAT levels in the observation group was significantly superior to that in the control group,the difference was statistically significant(P<0.05).(4)After treatment,the EHP-5 score of quality of life in the two groups was significantly improved(P<0.05),and the EHP-5 score of quality of life in the observation group was significantly superior to that in the control group,the difference was statistically significant(P<0.05).Conclusion Acupuncture combined with Shenqi Huoxue Decoction in the treatment of adenomyosis of qi deficiency and blood stasis type can significantly improve the clinical symptoms of patients,regulate the levels of SOD and CAT,so as to improve the quality of life of patients,and the curative effect is significant.
7.Tissue distribution of Qingfei Paidu Decoction based on HPLC-MS/MS.
Yan ZHANG ; Hai-Yu ZHAO ; Li-Xin YANG ; Yan-Yan ZHOU ; Bao-Lin BIAN ; Hua-Kai WU ; Hua-Ying ZHU ; Nan SI ; Peng-Fei LIN ; Liang WANG ; Hong-Jie WANG
China Journal of Chinese Materia Medica 2023;48(11):3074-3085
The tissue distribution of Qingfei Paidu Decoction was studied by HPLC-MS/MS in vivo. Hypersil GOLD C_(18) column(2.1 mm×50 mm, 1.9 μm) was used for gradient elution with acetonitrile as the mobile phase A and 0.1% formic acid solution as the mobile phase B. High-resolution liquid chromatography-mass spectrometry in both positive and negative ion scanning mode and multiple response monitoring(MRM) mode was employed to analyze the behaviors of the active components of Qingfei Paidu Decoction in diffe-rent tissues. The results showed that 19, 9, 17, 14, 22, 19, 24, and 2 compounds were detected in plasma, heart, liver, spleen, lung, kidney, large intestine, and brain, respectively. The compounds belonged to 8 groups, covering 14 herbs in the prescription. After administration with Qingfei Paidu Decoction, the compounds were rapidly distributed in various tissues, especially in the lung, liver, large intestine, and kidney. The majority of the compounds displayed secondary distribution. This study comprehensively analyzed the distribution rules of the main active components in Qingfei Paidu Decoction and provided a basis for the clinical application.
Chromatography, High Pressure Liquid
;
Tandem Mass Spectrometry
;
Tissue Distribution
;
Drugs, Chinese Herbal
8.Systematic comparison of two kinds of Bufonis Venenum derived from different Bufo gargarizans subspecies based on metabolomics and antitumor activity.
Bo SUN ; Ming-Li LI ; Yao-Hua DING ; Yong ZHANG ; Bo XIA ; Sheng-Ya GUO ; Shi-Lu WANG ; Bao-Lin BIAN ; Nan SI ; Hai-Yu ZHAO
China Journal of Chinese Materia Medica 2023;48(5):1280-1288
This paper compared the differences between two kinds of Bufonis Venenum produced by Bufo gargarizans gargarizans and B. gararizans andrewsi, and verified the rationality of the market value orientation of Bufonis Venenum based on the zebrafish mo-del. Twenty batches of Bufonis Venenum from Jiangsu province, Hebei province, Liaoning province, Jilin province, and Liangshan, Sichuan province, including B. gargarizans gargarizans and B. gararizans andrewsi, were collected. The UHPLC-LTQ-Orbitrap-MS combined with principal component analysis was used to compare the differences between two kinds of Bufonis Venenum. According to the limiting conditions of VIP>1, FC<0.5 or FC>2.0, and peak total area ratio>1%, 9 differential markers were determined, which were cinobufagin, cinobufotalin, arenobufagin, resibufogenin, scillaredin A, resibufagin, 3-(N-suberoylargininyl)-arenobufagin, 3-(N-suberoylargininyl)-marinobufagin, and 3-(N-suberoylargininyl)-resibufogenin. The content of 20 batches of Bufonis Venenum was determined according to the Chinese Pharmacopoeia(2020 edition) by high-performance liquid chromatography, and the 2 batches of Bufonis Venenum, CS7(8.99% of total content) and CS9(5.03% of total content), with the largest difference in the total content of the three quality control indexes of the Chinese Pharmacopoeia(bufalin, cinobufagin, and resibufogenin) were selected to evaluate their anti-liver tumor activity based on the zebrafish model. The tumor inhibition rates of the 2 batches were 38.06% and 45.29%, respectively, proving that only using the quality control indexes of the Chinese Pharmacopoeia as the value orientation of Bufonis Venenum market circulation was unreasonable. This research provides data support for the effective utilization of Bufonis Venenum resources and the establishment of a rational quality evaluation system of Bufonis Venenum.
Animals
;
Zebrafish
;
Bufanolides/analysis*
;
Bufonidae
;
Chromatography, High Pressure Liquid
;
Quality Control
;
Cell Line, Tumor
9.Molecular diagnosis and treatment of meningiomas: an expert consensus (2022).
Jiaojiao DENG ; Lingyang HUA ; Liuguan BIAN ; Hong CHEN ; Ligang CHEN ; Hongwei CHENG ; Changwu DOU ; Dangmurenjiapu GENG ; Tao HONG ; Hongming JI ; Yugang JIANG ; Qing LAN ; Gang LI ; Zhixiong LIU ; Songtao QI ; Yan QU ; Songsheng SHI ; Xiaochuan SUN ; Haijun WANG ; Yongping YOU ; Hualin YU ; Shuyuan YUE ; Jianming ZHANG ; Xiaohua ZHANG ; Shuo WANG ; Ying MAO ; Ping ZHONG ; Ye GONG
Chinese Medical Journal 2022;135(16):1894-1912
ABSTRACT:
Meningiomas are the most common primary intracranial neoplasm with diverse pathological types and complicated clinical manifestations. The fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), published in 2021, introduces major changes that advance the role of molecular diagnostics in meningiomas. To follow the revision of WHO CNS5, this expert consensus statement was formed jointly by the Group of Neuro-Oncology, Society of Neurosurgery, Chinese Medical Association together with neuropathologists and evidence-based experts. The consensus provides reference points to integrate key biomarkers into stratification and clinical decision making for meningioma patients.
REGISTRATION
Practice guideline REgistration for transPAREncy (PREPARE), IPGRP-2022CN234.
Humans
;
Meningioma/pathology*
;
Consensus
;
Neurosurgical Procedures
;
Meningeal Neoplasms/pathology*
10.Determination of neohesperidin and naringin in Qingfei Paidu Granules by RP-HPLC and their transfer rates in preparation process.
Yan ZHANG ; Hong-Jie WANG ; Li-Xin YANG ; Yan-Yan ZHOU ; Hai-Yu ZHAO ; Ming-Li LI ; Bao-Lin BIAN ; Hua-Kai WU ; Hua-Ying ZHU ; Nan SI ; Ling HAN
China Journal of Chinese Materia Medica 2022;47(16):4372-4376
The present study established an RP-HPLC method for simultaneous determination of two active components in Qingfei Paidu Granules and investigated the transfer rates of neohesperidin and naringin in the preparation process to provide references for improving the quality control standard and production of Qingfei Paidu Granules.RP-HPLC was performed on a YMC Triart C_(18) column(4.6 mm×150 mm, 5 μm)with column temperature of 30 ℃, acetonitrile(A) and 0.2% phosphoric acid solution(B) as mobile phases for gradient elution at a flow rate of 1.0 mL·min~(-1) and detection wavelength of 284 nm.Good linearity was observed for naringin at 0.10-1.0 μg(R~2=0.999 9) and neohesperidin at 0.12-1.2 μg(R~2=0.999 9).The average recovery of naringin was 99.52% with an RSD of 1.2%, and that of neohesperidin was 100.8% with an RSD of 1.2%.The transfer rates of naringin and neohesperidin between medicinal materials, extracts, concentrates, and granules were measured by this method.The average transfer rate of naringin from medicinal materials to granules was 54.89%±4.38%, and that of neohesperidin was 57.63%±5.88%.The process from medicinal materials to extracts was presumedly the key link affecting the whole preparation process.The established method is simple and sensitive and can be adopted for the quality control of Qingfei Paidu Granules.Meanwhile, it can be used to investigate the transfer rate of neohesperidin and naringin in the preparation of Qingfei Paidu Granules, and further improve the quality control standard of Aurantii Fructus Immaturus in Qingfei Paidu Granules.
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal
;
Flavanones
;
Hesperidin/analogs & derivatives*

Result Analysis
Print
Save
E-mail